To provide baseline data for physiological studies of extreme low-temperature (LT) tolerance in boreal conifers, we profiled LT stress responses, liquid nitrogen (LN(2))-quench tolerance, and sugar concentrations in foliage of boreal-temperate species pairs in the genera Abies, Picea and Pinus, growing in an arboretum in a temperate oceanic climate from August 2006 through April 2007. The boreal species acclimated more rapidly and deeply than the temperate species, acquiring LN(2)-quench tolerance by late November, despite unusually warm conditions throughout the autumn and early winter. Maximum LT tolerance in the temperate species was in the -25 to -35 degrees C range, and was reached only after a period of freezing temperatures in late January and February. During LT acclimation in the temperate species, sigmoid temperature-relative electrolyte leakage (REL) curves shifted toward lower temperatures, whereas in boreal species there was both a temperature shift and a lowering of the maximum REL until it fell below a threshold associated with irreversible injury. These differences may reflect differences in mechanisms of LT acclimation and LT tolerance. The concentrations of total and individual sugars did not show a clear pattern that could differentiate the boreal and temperate groups. Raffinose and, in three of the six species, stachyose showed the closest association with LT tolerance. Sugar concentrations, principally sucrose, decreased during mild weather, perhaps because of respiratory losses or phloem export, and increased after periods of freezing temperatures. Low-temperature acclimation in boreal species appears to follow a rigid program that may affect their ability to avoid excessive respiratory losses in the event of continued climate warming in boreal regions.
Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane–membrane interactions.
SummarySiberian spruce (Picea obovata) is one of several boreal conifer species that can survive at extremely low temperatures (ELTs). When fully acclimated, its tissues can survive immersion in liquid nitrogen. Relatively little is known about the biochemical and biophysical strategies of ELT survival.We profiled needle metabolites using gas chromatography coupled with mass spectrometry (GC-MS) to explore the metabolic changes that occur during cold acclimation caused by natural temperature fluctuations.In total, 223 metabolites accumulated and 52 were depleted in fully acclimated needles compared with pre-acclimation needles. The metabolite profiles were found to develop in four distinct phases, which are referred to as pre-acclimation, early acclimation, late acclimation and fully acclimated. Metabolite changes associated with carbohydrate and lipid metabolism were observed, including changes associated with increased raffinose family oligosaccharide synthesis and accumulation, accumulation of sugar acids and sugar alcohols, desaturation of fatty acids, and accumulation of digalactosylglycerol. We also observed the accumulation of protein and nonprotein amino acids and polyamines that may act as compatible solutes or cryoprotectants.These results provide new insight into the mechanisms of freezing tolerance development at the metabolite level and highlight their importance in rapid acclimation to ELT in P. obovata.
Because they maintain green foliage throughout the winter season, evergreen conifers may face special physiological challenges in a warming world. We assessed the midwinter low-temperature (LT) tolerance of foliage from eight temperate and boreal species in each of the genera Abies, Picea, and Pinus growing in an arboretum in Trondheim, Norway, using relative electrolyte leakage (REL) as an index of cell injury. Relatively LT sensitive species came from temperate coastal and Mediterranean environments and displayed a well-defined sigmoidal response to LT stress, with LT 50 ranging from -27 to -38°C. Species originating from boreal regions were not lethally stressed by slow freezing to temperatures as low as -80°C, while species from temperate mountains and continental interiors displayed intermediate responses, with LT50s ranging from -33 to -44°C. Further evaluation of one sensitive and one insensitive species in each genus showed that boreal species can survive quenching in liquid nitrogen at -196°C provided they are first slowly cooled to -30°C or lower. Quantitative image analysis of color changes resulting from LT stress followed by exposure to light showed that foliage from nonlethally stressed boreal species developed mild to moderate chlorosis while more sensitive species developed a mixture of chlorosis and necrosis, with significant necrosis occurring mainly at temperatures resulting in REL of 50% or more. Sensitive and insensitive trees differed significantly in total raffinose, sucrose, and total sugar concentrations, and raffinose and sucrose correlated significantly with LT 50 within the sensitive group.
Summary• Polygalacturonase-inhibiting proteins (PGIPs) have been demonstrated to play a role in host defence in several plants.• The PGIP now cloned from strawberry ( Fragaria × ananassa ) showed a high degree of homology to other fruit PGIPs. The gene expression of strawberry PGIP was monitored in healthy leaves, flowers and fruit at different maturity stages. PGIP transcript levels were also analysed following fruit inoculation with the fungal pathogen Botrytis cinerea in strawberry cultivars displaying variation in susceptibility.• Healthy mature berries showed the highest constitutive PGIP gene expression levels compared with leaves, flowers and immature fruit, indicating that the gene is developmentally regulated. Among the cultivars studied ('Elsanta', 'Korona', 'Polka', 'Senga sengana', 'Tenira'), 'Polka' had the highest constitutive expression level of PGIP. After inoculation with B. cinerea , all five cultivars displayed a significant induction of PGIP gene expression, but the differences between them were not statistically significant.• The high induction of the PGIP gene after inoculation with B. cinerea indicates that PGIP has a role in defence of strawberry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.