Prereduction of Nchwaning manganese ore was investigated by isothermal reduction between 600 and 800 °C to optimize the conditions for industrial pretreatment of manganese ores. Experiments were conducted in CO/CO2 gas mixtures with and without hydrogen at two different oxygen partial pressures. Ore in the size fraction 9.52–15 mm was reduced in a thermogravimetric furnace, and the O/Mn ratio from the chemical analysis was used to determine the extent of prereduction. The samples were investigated by X-ray diffraction to investigate the evolution of phases under the course of reduction. The X-ray diffraction revealed that bixbyite and braunite (I and II) were reduced to manganosite with no or limited formation of hausmannite. Reduction of iron oxides subsided with wüstite, which is stabilized by manganese in the monoxide phase, and hydrogen was seen to improve the reduction of iron oxides. Modeling revealed that the reduction rate increased 2.8-fold upon increasing the CO content from 30% to 70% in a CO/CO2 gas mixture. The addition of hydrogen improved the reduction rate with factors of 1.3 and 2.6 for the low and the high oxygen partial pressures, respectively. Hence, the optimal conditions for pretreatment can be achieved by keeping the oxygen partial pressure as low as possible while adding hydrogen to the reducing gas and ensuring a high reduction temperature. Successful pretreatment limits the extent of the Boudouard reaction in the submerged arc furnace, reducing the amount of CO produced and, thus, reducing the CO available for pretreatment. Hydrogen is a useful addition to the pretreatment unit since it lowers the oxygen partial pressure and improves the kinetics of prereduction.
The incorporation of hydrogen, which is a relatively unexplored reductant used during ferromanganese (FeMn) production, is an attractive approach to lessen atmospheric gaseous carbon release. The influence of hydrogen on the pre-reduction of carbonate-rich United Manganese of Kalahari (UMK) ore from South Africa was investigated. Experiments were performed in 70 pct CO 30 pct CO2 (reference), 70 pct H2 30 pct H2O, and 100 pct H2 gas atmospheres at 700 °C, 800 °C, and 900 °C. Calculated phase stability diagrams and experimental results showed good correlation. The pre-reduction process involved two reactions proceeding in parallel, i.e., the pre-reduction of higher oxides and the decomposition of carbonates present in the ore. A thermogravimetric (TG) furnace was employed for the pre-reduction of the ore in various atmospheres. The calculated weight loss percentage was used to determine the degree and rate of pre-reduction. It was found that the oxidation state of higher Fe- and Mn-oxides was lowered when treated in 70 pct H2 30 pct H2O and 70 pct CO 30 pct CO2, whereas FeO was metalized when using 100 pct H2. As for the intrinsic carbonates, the majority thereof were decomposed in the CO/CO2 atmosphere at 900 °C, and ≥ 700 °C in the H2/H2O and H2 atmospheres. Additionally, the degree and rate of reduction were accelerated by increasing the pre-reduction temperature and by employing a hydrogen-containing gas atmosphere (70 pct H2 30 pct H2O, and 100 pct H2). Scanning electron microscopy and electron microprobe analysis revealed the presence of three phases in the pre-reduced ore: (i) Mn- and Fe-rich, (ii) Mg- and Ca-rich, and (iii) Mg-, Si-, K-, and Na-rich. It was also found that there were no appreciable differences in porosity and decrepitation of the ores treated in the CO/CO2 and hydrogen-containing atmospheres. The use of a hydrogen atmosphere showed potential for the pre-reduction of carbonate-containing manganese ores as it accelerated the decomposition of the carbonates as well as facilitated the metallization of Fe-oxides present in the ore.
The prereduction reactions in the submerged arc furnace (SAF) are highly decisive of the total carbon, and energy consumption of the ferromanganese process. Therefore, understanding the dependency of prereduction behavior on ore characteristics and furnace conditions is of paramount importance. Prereduction behavior of Comilog, Nchwaning and UMK ores with solid carbon was studied in an open 75 kVA induction furnace set up simulating the conditions of an industrial SAF. In addition, the ores were thermogravimetrically studied with non-isothermal heating to 1000 °C in a flowing 70/30 CO/CO2 atmosphere. Gasification of carbon according to Boudouard reaction was considered significant for carbonate ores in induction furnace setup. UMK had a greater extent of prereduction compared to Nchwaning which is low in carbonates and Comilog which is known to have a higher CO reactivity at similar CO contents. TGA rate curves shows that prereduction of UMK ore occurred with two major distinctive steps. The first one was a combination of prereduction reactions and decomposition of carbonates with a peak temperature of 700 °C, and the second peak was the decomposition of calcite at 900 °C. The O/Mn ratio for UMK shows that prereduction is already completed prior to the second decomposition peak at 900 °C. In addition to prereduction reactions, Nchwaning is also characterized by an endothermic step which is decomposition of carbonates at 900 °C. Comilog ore produced the most fines followed by Nchwaning and lastly UMK on decrepitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.