Objective Vascular cells, particularly endothelial cells, adopt aerobic glycolysis to generate energy to support cellular functions. The effect of endothelial glycolysis on angiogenesis remains unclear. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, isoform 3 (PFKFB3), is a critical enzyme for endothelial glycolysis. By blocking or deleting PFKFB3 in endothelial cells, we investigated the influence of endothelial glycolysis on angiogenesis both in vitro and in vivo. Approach and Results Under hypoxic conditions or following treatment with angiogenic factors, endothelial PFKFB3 was upregulated both in vitro and in vivo. The knockdown or overexpression of PFKFB3 suppressed or accelerated endothelial proliferation and migration in vitro, respectively. Neonatal mice from a model of oxygen-induced retinopathy showed suppressed neovascular growth in the retina when endothelial PFKFB3 was genetically deleted or when the mice were treated with a PFKFB3 inhibitor. Additionally, tumors implanted in mice deficient in endothelial PFKFB3 grew more slowly and were provided with less blood flow. A lower level of phosphorylated AKT (pAKT) was observed in PFKFB3-knockdown endothelial cells, which was accompanied by a decrease in intracellular lactate. The addition of lactate to PFKFB3-knockdown cells rescued the suppression of endothelial proliferation and migration. Conclusions The blockade or deletion of endothelial PFKFB3 decreases angiogenesis both in vitro and in vivo. Thus, PFKFB3 is a promising target for the reduction of endothelial glycolysis and its related pathological angiogenesis.
SUMMARY The inhibitory effects of cancer on T cell metabolism have been well established, but the metabolic impact of immunotherapy on tumor cells is poorly understood. Here, we developed a CD4+ T cell-based adoptive immunotherapy protocol that was curative for mice with implanted colorectal tumors. By conducting metabolic profiling on tumors, we show that adoptive immunotherapy profoundly altered tumor metabolism, resulting in glutathione depletion and accumulation of reactive oxygen species (ROS) in tumor cells. We further demonstrate that T cell-derived tumor necrosis factor alpha (TNF-α) can synergize with chemotherapy to intensify oxidative stress and tumor cell death in an NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase-dependent manner. Reduction of oxidative stress, by preventing TNF-α-signaling in tumor cells or scavenging ROS, antagonized the therapeutic effects of adoptive immunotherapy. Conversely, provision of pro-oxidants after chemotherapy can partially recapitulate the antitumor effects of T cell transfer. These findings imply that reinforcing tumor oxidative stress represents an important mechanism underlying the efficacy of adoptive immunotherapy.
In recent years the combined use of chemotherapy and immunotherapy, collectively termed chemoimmunotherapy, has emerged as a promising treatment option for patients with cancer. Antibiotics are commonly used to reduce infection-related complications in patients undergoing chemotherapy. Intriguingly, accumulating evidence has implicated gut microbiota as a critical determinant of host antitumor immune responses, raising the question as to whether the use of broad-spectrum antibiotics would invariably diminish tumor response to chemoimmunotherapies. We investigated the impact of antibiotics on the therapeutic outcomes of cyclophosphamide (CTX) chemotherapy and adoptive T-cell therapy (ACT) where CTX was used as the host-conditioning regimen in mice. We show that antibiotic prophylaxis dampened the endogenous T cell responses elicited by CTX, and reduced the efficacy of CTX against B-cell lymphoma. In the ACT setting, antibiotics administration impaired the therapeutic effects of adoptively transferred tumor-specific CD4+ T cells in mice with implanted colorectal tumors. In contrast, long-term antibiotic exposure did not affect the efficacy of ACT using CD19-targeting chimeric antigen receptor (CAR) T cells in mice with systemic B-cell lymphoma, although it correlated with prolonged CAR expression and sustained B-cell aplasia. Our study demonstrates that chemoimmunotherapies may have variable reliance on intestinal microbiota for T cell activation and function, and thus have different sensitivities to antibiotic prophylaxis. These findings may have implications for the judicial use of antibiotics in cancer patients receiving chemoimmunotherapies.
In recent years the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the current study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4+ T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelo-leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum resident calreticulin (CRT), and extracellular release of high-mobility group box 1 (HMGB1). In addition, there was enhanced tumor antigen uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8+ T cells, and more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4+ T cells. Notably, the combination of melphalan and CD4+ T-cell adoptive cell therapy (ACT) was more efficacious than either treatment alone in prolonging the survival of mice with advanced B-cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan’s immunostimulatory effects, and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4+ T cells.
Increased availability of homeostatic cytokines is considered a major mechanism by which lymphodepletion enhances the efficacy of adoptive T cell therapy (ACT). IL-7 is one such cytokine capable of augmenting the function of tumor-reactive CD8+ T cells. However, whether host-derived IL-7 plays a role in driving the proper function of CD4+ T cells in an ACT setting remains unclear. Here we report that lymphodepleting chemotherapy by cyclophosphamide (CTX) does not lead to increased availability of the endogenous IL-7 in mice. Despite of a paucity of IL-7 in the immune milieu, CTX preconditioning allowed adoptively transferred naïve tumor-specific CD4+ T cells to undergo effector differentiation and regain IL-7Rα expression, giving rise to IL-7-responsive polyfunctional CD4+ effector cells. Correspondingly, supplementation of exogenous recombinant IL-7 markedly amplified and sustained polyfunctional CD4+ effector cells, resulting in improved therapeutic outcome in a mouse lymphoma model. We further demonstrated that the immune-enhancing effects of IL-7 were also applicable to donor CD4+ T cells pre-activated under Th1 polarizing condition. These findings suggest caution in relying on the endogenous IL-7 to enhance donor T cell expansion and persistence after lymphodepleting chemotherapy, and highlight the usefulness of recombinant IL-7 as an adjuvant for adoptive immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.