Four iridium(III)-containing coordination polymers 1-4 using Ir(ppy)(2)(H(2)dcbpy)PF(6) (L-H(2), ppy = 2-phenylpyridine, H(2)dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) as the bridging ligand, [ZnL(2)]·3DMF·5H(2)O (1), [CdL(2)(H(2)O)(2)]·3DMF·6H(2)O (2), [CoL(2)(H(2)O)(2)]·2DMF·8H(2)O (3) and [NiL(2)(H(2)O)(2)]·3DMF·6H(2)O (4), have been synthesized and structurally characterized. The emissions from 1-4 are ascribed to a metal-to-ligand charge transfer transition (MLCT). The absolute emission quantum yields for 1-4 in single crystals were measured in air to be 0.274, 0.193, 0.001 and 0.002, respectively. The noteworthy oxygen-sensing properties of 1-4 as well as L-H(2) in a single crystal were also evaluated. The Stern-Volmer quenching constant, K(SV) values, of 1-4 and L-H(2) can be deduced to be 0.834, 2.820, 1.328, 1.111 and 2.476, respectively. The results show promising K(SV) values (e.g.2) that are competitive or even larger than those of many known Ir-complexes. Moreover, the short response time (e.g. compound 2) and recovery times toward oxygen of 1-4 have been measured in their single crystal forms. The reversibility experiments for 1-4 were carried out for seven repeated cycles. As a result, >75% recovery of intensity for 1 and 2 on each cycle demonstrates a high degree of reproducibility during the sensing process. It should be noted that iridium(III)-containing coordination polymers with high emission intensity and notable oxygen sensing properties are obscure, especially in the single crystal form. This, in combination with its fine reversibility, leads to success in single crystal oxygen recognition based on photoluminescence imaging. The detection limit could be 0.50% for gaseous oxygen. Moreover, the temperature effect of compound 2 in a single crystal upon application as an oxygen sensor was expected.
Magnetic resonance imaging (MRI) is extensively used in clinical and basic biomedical research. However, MRI detection of pH changes still poses a technical challenge. Chemical exchange saturation transfer (CEST) imaging is a possible solution to this problem. Using saturation transfer, alterations in the exchange rates between the solute and water protons because of small pH changes can be detected with greater sensitivity. In this study, we examined a fatigued skeletal muscle model in electrically stimulated mice. The measured CEST signal ratio was between 1.96 ppm and 2.6 ppm in the z-spectrum, and this was associated with pH values based on the ratio between the creatine (Cr) and the phosphocreatine (PCr). The CEST results demonstrated a significant contrast change at the electrical stimulation site. Moreover, the pH value was observed to decrease from 7.23 to 7.15 within 20 h after electrical stimulation. This pH decrease was verified by 31P magnetic resonance spectroscopy and behavioral tests, which showed a consistent variation over time.
RNA-binding proteins (RBPs) have intrinsically disordered regions (IDRs) whose biophysical properties have yet to be explored to the same extent as those of the folded RNA interacting domains. These IDRs are essential to the formation of biomolecular condensates, such as stress and RNA granules, but dysregulated assembly can be pathological. Because of their structural heterogeneity, IDRs are best studied by NMR spectroscopy. In this study, we used NMR spectroscopy to investigate the structural propensity and self-association of the IDR of the RBP Musashi-1. We identified two transient α-helical regions (residues ~208–218 and ~270–284 in the IDR, the latter with a polyalanine tract). Strong NMR line broadening in these regions and circular dichroism and micrography data suggest that the two α-helical elements and the hydrophobic residues in between may contribute to the formation of oligomers found in stress granules and implicated in Alzheimer’s disease. Bioinformatics analysis suggests that polyalanine stretches in the IDRs of RBPs may have evolved to promote RBP assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.