This study was aimed to investigate the presence of Bacillus coagulans vegetative cells in the intestine and fecal samples in rats fed B. coagulans spores as well as to estimate the ratios of spores and vegetative cells in these samples. A two-step process has been developed to enumerate B. coagulans in different mixed bacterial samples, specifically (1) observation of yellow ring formation on modified GYEA medium upon incubation at 55°C, (2) microscopic examination of spore formation after 7 d of incubation. Our results have demonstrated the presence of vegetative cells in the intestinal and fecal samples in rats fed B. coagulans spores. The ratios of B. coagulans spores and vegetative cells in cecal fluid, colonic content, and feces were approximately 2:8, 2:8, and 4:6, respectively. The existence of B. coagulans vegetative cells improved the intestinal milieu through an elevated short-chain fatty acid concentrations, higher fecal moisture, and lower fecal pH.
This study investigated the effects of incorporating a mixture of fructooligosaccharide (FOS) and resistant maltodextrin (RMD) at a ratio of 1:2 on body fat accumulation and fecal bacterial parameters in rats. Our results indicated that high dietary fat consumption might effectively (p < 0.05) increase body fat, but consequently inducing a significantly (p < 0.05) higher growth of C. perfringens and retarded growth (p < 0.05) of the Bifidobacterium spp. in the large intestine. As compared with the high fat control, an incorporation of the FOS and RMD mixture at a high dose (0.97 and 1.94 g/kg body weight, respectively) could result in a significant (p < 0.05) reduction in feed efficiency (−16%), total visceral fat (−17.4%), non-visceral fat levels (−20.3%), and total body fat (−19.2%). Furthermore, feeding the FOS and RMD mixture at a high dose was capable to counter the above undesirable impacts by reducing the C. perfringens count (−14.8%) and increasing the total Bifidobacterium count (134.4%) and total fecal short chain fatty acids (195.4%). A supplementation of adequate amount of FOS and RMD might confer a concreted solution to the obesity and deteriorated fecal bacteria profiles due to high fat consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.