We prove limit laws for the number of occurrences of a pattern on the fringe of a ranked tree-child network which is picked uniformly at random. Our results extend the limit law for cherries proved by Bienvenu et al. (2022). For patterns of height 1 and 2, we show that they either occur frequently (mean is asymptotically linear and limit law is normal) or sporadically (mean is asymptotically constant and limit law is Poisson) or not all (mean tends to 0 and limit law is degenerate). We expect that these are the only possible limit laws for any fringe pattern.
We prove limit laws for the number of occurrences of a pattern on the fringe of a ranked tree‐child network which is picked uniformly at random. Our results extend the limit law for cherries proved by Bienvenu et al. (Random Struct. Algoritm. 60 (2022), no. 4, 653–689). For patterns of height 1 and 2, we show that they either occur frequently (mean is asymptotically linear and limit law is normal) or sporadically (mean is asymptotically constant and limit law is Poisson) or not all (mean tends to 0 and limit law is degenerate). We expect that these are the only possible limit laws for any fringe pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.