This paper presents experimental data on the variation of lateral earth pressure against a nonyielding retaining wall due to soil filling and vibratory compaction. Air-dry Ottawa sand was placed in five lifts and each lift was compacted to achieve a relative density of 75%. Each compacted lift was 0.3 m thick. The instrumented nonyielding wall facility at National Chiao Tung University in Taiwan was used to investigate the effects of vibratory compaction on the change of stresses at the soil-wall interface. Based on the experimental data it has been found that, for a compacted backfill, the vertical overburden pressure can also be properly estimated with the traditional equation v = ␥z. The effects of vibratory compaction on the vertical pressure in the backfill were insignificant. On the vertical nonyielding wall, extra horizontal earth pressure was induced by vibratory compaction. After compaction, the lateral earth pressure measured near the top of the wall was almost identical to the passive Rankine pressure. It is concluded that as the cyclic compacting stress applied on the surface of the backfill exceeded the ultimate bearing capacity of the foundation soil, a shear failure zone would develop in the uppermost layer of the backfill. For a soil element under lateral compression, the vertical overburden pressure remained unchanged, and the horizontal stress increased to the Rankine passive pressure. It was also found that the compaction-influenced zone rose with the rising compaction surface. The horizontal earth pressure measured below the compaction-influenced zone converged to the Jaky state of stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.