Cerebral insulin can regulate glucose homeostasis via activation of the parasympathetic nervous system, which results in the reduction of hepatic glucose output. However, the precise mechanism(s) through which cerebral insulin directly exerts an effect on insulin secretion remains unclear. In the present study, we found that cerebral administration of insulin caused an increase of plasma insulin concentration and a concomitant decrease in plasma glucose levels within one hour. These effects were blocked by vagotomy or intraperitoneal injection of 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide, a specific M (3) antagonist. The mediating influence of parasympathetic activation can thus be considered. The adenosine triphosphate-sensitive potassium (K-ATP) channel is a key mediator of the cerebral action of insulin. The plasma glucose-lowering action of insulin was abolished by cerebral administration of glibenclamide or repaglinide at concentrations sufficient to block K-ATP channels. In conclusion, our findings suggest that cerebral insulin may induce insulin release by stimulating the opening of K-ATP channels, which in turn activate parasympathetic tone in pancreatic tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.