Medical treatment may require the continuous intravenous (IV) infusion of drugs to sustain the therapeutic blood concentration and to minimize dosing errors. Animal disease models that ultimately mimic the intended use of new potential drugs via a continuous IV infusion in unrestrained, free roaming animals are required. While peripherally inserted central catheters (PICCs) and other central line techniques for prolonged IV infusion of drugs are prevalent in the clinic, continuous IV infusion methods in an animal model are challenging and limited. In most cases, continuous IV infusion methods require surgical knowledge as well as expensive and complicated equipment. In the current work, we established a novel rabbit model for prolonged continuous IV infusion by inserting a PICC line from the marginal ear vein to the superior vena cava and connecting it to an externally carried ambulatory infusion pump. Either saline or a clinically relevant formulation could be steadily and continuously infused at 3–6 ml/h for 11 consecutive days into freely moving rabbits while maintaining normal body temperature, weight, and respiration physiology, as determined by daily spirometry. This new model is simple to execute and can advance the ability to administer and test new drug candidates.
Introduction: Most animal handling procedures are associated with injuries among veterinary staff and laboratory animal researchers. However, much of the currently available animal handling equipment is inadequate, limiting access to the treated animal or making workflow cumbersome. Moreover, restraining animals to perform procedures, such as blood collection or injection, elicits stress in both the animal and the worker. Herein, we present 4 home-built restraint and blood collection devices in extensive use in our institute. Methods: Animal laboratory workers and experienced veterinarians regularly using the devices (n = 14) were asked to complete a survey ranking the contribution of the devices to worker safety and procedural efficiency. Results: The overwhelming majority of responders (≥75%) associated all 4 devices with substantial improvements in worker safety and procedural efficiency. There were no reports of impaired workflow or safety when using the devices. Discussion: Infection and exposure control may be implemented on various levels, including use of safer procedures, such as injection and blood collection devices. The presented intuitive handling and restraint devices allow the animal worker/researcher to perform various procedures safely and efficiently while eliciting less animal and worker stress. The devices can be easily adjusted to accommodate animal size and disease status. Conclusion: The current devices will serve as prototypes for design of devices for larger laboratory animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.