Expansive soils undergo high volume change due to cyclic swelling and shrinkage behavior during the wet and dry seasons. Thus, such problematic soils should be completely avoided or properly treated when encountered as subgrade materials. In the present study, the biomedical waste incinerator ash and lime combination was proposed to stabilize expansive soil. Particle size analysis, Atterberg limits, free-swell, compaction, unconfined compression strength, and California bearing ratio tests were conducted on the natural soil and blended with 3%, 5%, 7%, 9%, and 11% biomedical waste incinerator ash (BWIA). The optimum content of BWIA was determined based on the free-swell test results. To further investigate the relative effectiveness of the stabilizer, 2% and 3% lime were also added to the optimum soil-BWIA mixture and UCS and CBR tests were also conducted. In addition, scanning electron microscopy (SEM) tests for representative stabilized samples were also conducted to examine the changes in microfabrics and structural arrangements due to bonding. The addition of BWIA has a promising effect on the index properties and strength of the expansive soil. The strength of the expansive soil significantly increased when it was blended with the optimum content of BWIA amended by 2% and 3% lime.
When moisture levels fluctuate, expansive soils lose a large amount of volume. During the rainy and dry seasons, this type of soil expands and contracts, respectively. As a result, such problematic soils should be avoided or appropriately managed when encountered as subgrade materials. The strength of the subgrade is measured in terms of its California Bearing Ratio (CBR) value which is tiresome, uneconomical, and time-consuming to determine in the laboratory. In the present study, the effect of bagasse ash (BA) and calcined termite clay powder (CTCP) on the strength, index, and microstructural properties of expansive soil was investigated. Laboratory tests such as Atterberg’s limits, particle size analysis, moisture-density relationship, and CBR tests were performed on the highly expansive soil and blended with 3%, 5%, 7%, 9%, and 11% bagasse ash (BA), and 5%, 10%, 15%, 20%, and 25% CTCP separately and in combination. In addition, the microstructural properties of the raw highly expansive soil and the soil stabilized with the optimum BA-CTCP combination were analyzed using the Scanning Electron Microscopy (SEM) machine. Soaked CBR prediction models were also developed using multiple linear regression (MLR) and artificial neural networks (ANNs) from the BA fraction (BAF), CTCP fraction (CTCPF), liquid limit (LL), plasticity index (PI), optimum moisture content (OMC), and maximum dry density (MDD). The soil understudy was very weak having a CBR value of 2.2% and a group index (GI) of 64.37 (reported as 20) and highly expansive with a PI of 51.61% and LL of 104.32%. The addition of both BA and CTCP separately and in combination had resulted in the reduction of PI and increased the strength of the soil under study. As compared with the individual effect, the combined effect of BA and CTCP was quite significant. The optimum BA and CTCP combination was determined from the free-swell index test result; a 72.5% reduction was observed when it was blended with a combination of 9% BA and 20% CTCP. Thus, 9% BA and 20% CTCP compositions could be the optimum percentage combination to stabilize the highly expansive soil under study. The PI was decreased by 85.75%, and the CBR became 5.5 times greater when it was stabilized with 11% BA + 25% CTCP. The SEM micrographs showed that the morphology and fabric of the control specimen (raw soil) were significantly changed when the soil was stabilized with the optimum BA-CTCP combination (9% BA + 20% CTCP). The MLR prediction model was shown to be less efficient and accurate than the ANN model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.