Many multivariate quality control techniques are used for multivariate variable processes, but few work for multivariate attribute processes. To monitor multivariate attributes, controlling the false alarms (type I errors) and considering the correlation between attributes are two important issues. By taking into account these two issues, a new control chart is presented to monitor a bivariate binomial process. An example is illustrated for the proposed method. To evaluate the performance of the proposed method, a simulation study is conducted to compare the results with those using both the multivariate np chart and skewness reduction approaches. The results show that the correlation is taken into account in the designed chart and the overall false alarm is controlled at the nominal value. Moreover, the process shift can be quickly detected and the variable that is responsible for a signal can be determined.multi-attribute control chart, control of bivariate binomial processes, average run length, multivariate process monitoring,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.