Stepping into the 21st century, “graphene fever” swept the world due to the discovery of graphene, made of single-layer carbon atoms with a hexagonal lattice. This wonder material displays impressive material properties, such as its electrical conductivity, thermal conductivity, and mechanical strength, and it also possesses unique optical and magnetic properties. Many researchers see graphene as a game changer for boosting the performance of various applications. Emerging consumer electronics and electric vehicle technologies require advanced battery systems to enhance their portability and driving range, respectively. Therefore, graphene seems to be a great candidate material for application in high-energy-density/high-power-density batteries. The “graphene battery”, combining two Nobel Prize-winning concepts, is also frequently mentioned in the news and articles all over the world. This review paper introduces how graphene can be adopted in Li-ion/Li metal battery components, the designs of graphene-enhanced battery materials, and the role of graphene in different battery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.