Microbial communities of human gut directly influence health and bear adaptive potential to different geography environment and lifestyles. However, knowledge about the influences of altitude and geography on the gut microbiota of Tibetans is currently limited. In this study, fecal microbiota from 208 Tibetans across six different locations were analyzed by MiSeq sequencing; these locations included Gannan, Gangcha, Tianzhu, Hongyuan, Lhasa and Nagqu, with altitudes above sea level ranging from 2800 m to 4500 m across the Tibetan plateau. Significant differences were observed in microbial diversity and richness in different locations. At the phylum level, gut populations of Tibetans comprised Bacteroidetes (60.00%), Firmicutes (29.04%), Proteobacteria (5.40%), and Actinobacteria (3.85%) and were marked by a low ratio (0.48) of Firmicutes to Bacteroidetes. Analysis based on operational taxonomic unit level revealed that core microbiotas included Prevotella, Faecalibacterium, and Blautia, whereas Prevotella predominated all locations, except Gangcha. Four community state types were detected in all samples, and they mainly belong to Prevotella, Bacteroides, and Ruminococcaceae. Principal component analysis and related correspondence analysis results revealed that bacterial profiles in Tibetan guts varied significantly with increasing altitude, BMI, and age, and facultative anaerobes were rich in Tibetan guts. Gut microbiota may play important roles in regulating high-altitude and geographical adaptations.
Leaves and roots may differ in nitrogen (N), phosphorus (P) and N:P stoichiometry, which can influence plant growth and ecosystem functioning. As compared to leaves, however, relatively little is known about the N versus P scaling relationship and N:P stoichiometry in root systems, particularly in fine roots. We used a global dataset comprising 1,890 observations for a total of 763 terrestrial plant species in 123 families (spanning 433 sites world‐wide) to examine live fine root N and P concentrations and stoichiometry, and to determine the scaling of N versus P within and across different plant groups and ecosystems. The global geometric mean values of fine root N and P concentrations and N:P ratios were 10.84 mg/g, 0.94 mg/g and 11.55, respectively. Fine root N and P concentrations and N:P ratios varied both within and across plant groups and ecosystems. A 0.82‐power law described the scaling of fine root N with respect to P across the entire dataset and for major plant phylogenetic and functional groups; however, the numerical value of the N versus P scaling exponent declined from the tropics to higher latitudes and varied significantly at different local sites. Soil nutrient account for much of the variation observed in the scaling of fine root N versus P concentration at different local sites. This study advances our knowledge about limiting resource allocation strategies in below‐ground organs and has important implications for modelling plant growth at local, regional and global levels. A free Plain Language Summary can be found within the Supporting Information of this article.
Understanding the interaction between large herbivores and pasture production, especially with respect to the grazing optimization hypothesis, is critical for pasture management and generating theoretical and testable predictions. However, the optimization hypothesis remains contradictory in alpine meadows on the Qinghai-Tibet Plateau (QTP). In this study, we tested the grazing optimization hypothesis using four yak-grazing intensities (no grazing, light grazing, moderate grazing and heavy grazing) in alpine meadow habitats from 2015 to 2017. The results indicated that species diversity did not differ significantly among grazing regimes during the experimental period. However, the aboveground net primary production (ANPP) under moderate grazing consistently significantly exceeded that in control enclosures over 3 years, confirming the grazing optimization hypothesis. Levels of overcompensation varied among grazing intensities and years, and grazing-induced plant compensation may only occur in the short term. The enhanced regrowth of Poaceae and Cyperaceae induced by yak grazing might contribute to the overall level of overcompensation by plant community. Our results strongly support the grazing optimization hypothesis in the context of alpine meadows grazed by yaks, emphasizing the complex interactions between ANPP, herbivores and other ecological factors in alpine meadows on the QTP. These findings provide new insights for the development of an ecological conservation strategy that will help restore this fragile ecosystem and balance the seemingly incompatible requirements of animal husbandry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.