Knowing the prices of agricultural commodities in advance can provide governments, farmers, and consumers with various advantages, including a clearer understanding of the market, planning business strategies, and adjusting personal finances. Thus, there have been many efforts to predict the future prices of agricultural commodities in the past. For example, researchers have attempted to predict prices by extracting price quotes, using sentiment analysis algorithms, through statistical information from news stories, and by other means. In this paper, we propose a methodology that predicts the daily retail price of pork in the South Korean domestic market based on news articles by incorporating deep learning and topic modeling techniques. To do this, we utilized news articles and retail price data from 2010 to 2019. We initially applied a topic modeling technique to obtain relevant keywords that can express price fluctuations. Based on these keywords, we constructed prediction models using statistical, machine learning, and deep learning methods. The experimental results show that there is a strong relationship between the meaning of news articles and the price of pork.
Air pollution is a critical problem that is of major concern worldwide. South Korea is one of the countries most affected by air pollution. Rapid urbanization and industrialization in South Korea have induced air pollution in multiple forms, such as smoke from factories and exhaust from vehicles. In this paper, we perform a comparative analysis of predictive models for fine particulate matter in Daejeon, the fifth largest city in South Korea. This study is conducted for three purposes. The first purpose is to determine the factors that may cause air pollution. Two main factors are considered: meteorological and traffic. The second purpose is to find an optimal predictive model for air pollutant concentration. We apply machine learning and deep learning models to the collected dataset to predict hourly air pollutant concentrations. The accuracy of the deep learning models is better than that of the machine learning models. The third purpose is to analyze the influence of road conditions on predicting air pollutant concentration. Experimental results demonstrate that considering wind direction and wind speed could significantly decrease the error rate of the predictive models.
Ensemble deep learning methods have demonstrated significant improvements in forecasting the solar panel power generation using historical time-series data. Although many studies have used ensemble deep learning methods with various data partitioning strategies, most have only focused on improving the predictive methods by associating several different models or combining hyperparameters and interactions. In this study, we contend that we can enhance the precision of power generation forecasting by identifying a suitable data partition strategy and establishing the ideal number of partitions and subset sizes. Thus, we propose a feasibility study of the influence of data partition strategies on ensemble deep learning. We selected five time-series data partitioning strategies—window, shuffle, pyramid, vertical, and seasonal—that allow us to identify different characteristics and features in the time-series data. We conducted various experiments on two sources of solar panel datasets collected in Seoul and Gyeongju, South Korea. Additionally, LSTM-based bagging ensemble models were applied to combine the advantages of several single LSTM models. The experimental results reveal that the data partition strategies positively influence the forecasting of power generation. Specifically, the results demonstrate that ensemble models with data partition strategies outperform single LSTM models by approximately 4–11% in terms of the coefficient of determination (R2) score.
As the world's population grows, how to maintain the food supply is becoming a bigger problem. Now and in the future, big data will play a major role in decision making in the agriculture industry. The challenge is how to obtain valuable information to help us make future decisions. Big data helps us to see history clearer, to obtain hidden values, and make the right decisions for the government and farmers. To contribute to solving this challenge, we developed the Agriculture Big Data Analysis System. The system consists of agricultural big data collection, big data analysis, and big data visualization. First, we collected structured data like price, climate, yield, etc., and unstructured data, such as news, blogs, TV programs, etc. Using the data that we collected, we implement prediction algorithms like ARIMA, Decision Tree, LDA, and LSTM to show the results in data visualizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.