This paper introduces a new julia package, LRMoE, a statistical software tailor-made for actuarial applications, which allows actuarial researchers and practitioners to model and analyse insurance loss frequencies and severities using the Logit-weighted Reduced Mixture-of-Experts (LRMoE) model. LRMoE offers several new distinctive features which are motivated by various actuarial applications and mostly cannot be achieved using existing packages for mixture models. Key features include a wider coverage on frequency and severity distributions and their zero inflation, the flexibility to vary classes of distributions across components, parameter estimation under data censoring and truncation and a collection of insurance ratemaking and reserving functions. The package also provides several model evaluation and visualisation functions to help users easily analyse the performance of the fitted model and interpret the model in insurance contexts.
In the underwriting and pricing of nonlife insurance products, it is essential for the insurer to utilize both policyholder information and claim history to ensure profitability and proper risk management. In this paper, we apply a flexible regression model with random effects, called the Mixed Logit-weighted Reduced Mixture-of-Experts, which leverages both policyholder information and their claim history, to categorize policyholders into groups with similar risk profiles, and to determine a premium that accurately captures the unobserved risks.Estimates of model parameters and the posterior distribution of random effects can be obtained by a stochastic variational algorithm, which is numerically efficient and scalable to large insurance portfolios. Our proposed framework is shown to outperform the classical benchmark models (Logistic and Lognormal GL(M)M) in terms of goodness-of-fit to data, while offering intuitive and interpretable characterization of policyholders' risk profiles to adequately reflect their claim history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.