Abstract:Linear time series models are not able to capture the behaviour of many financial time series, as in the cases of inflation rates, exchange rates and stock prices data. To overcome this problem, nonlinear time series models are typically designed to capture these nonlinear features in the data. (3) In this paper, we use portmanteau test and likelihood ratio test (LR) test to detect nonlinear feature and to justify the use of 2-regime Markov switching autoregressive model (MS-AR) in South Africa exchange rate between 1995 and 2013. For model selection criteria (AIC and SBC) were used and for identifying best model error matrix such as MEA and MSE were used. The study compared the in-sample fitting between linear model and Markov switching model. From the error matrix (MEA and MSE) values, it is found that the MS -AR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.