transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.
Higher education in the fourth industrial revolution (HE 4.0) is a complex, dialectical and exciting opportunity which can potentially transform society for the better. The fourth industrial revolution is powered by artificial intelligence and it will transform the workplace from tasks based characteristics to the human centred characteristics. Because of the convergence of man and machine, it will reduce the subject distance between humanities and social science as well as science and technology. This will necessarily require much more interdisciplinary teaching, research and innovation. This paper explores the impact of HE 4.0 on the mission of a university which is teaching, research (including innovation) and service.
Hamiltonian Monte Carlo is a Markov Chain Monte Carlo method that has been widely applied to numerous posterior inference problems within the machine learning literature. Markov Chain Monte Carlo estimators have higher variance than classical Monte Carlo estimators due to autocorrelations present between the generated samples. In this work we present three new methods for tackling the high variance problem in Hamiltonian Monte Carlo based estimators: 1) We combine antithetic and importance sampling techniques where the importance sampler is based on sampling from a modified or shadow Hamiltonian using Separable Shadow Hamiltonian Hybrid Monte Carlo, 2) We present the antithetic Magnetic Hamiltonian Monte Carlo algorithm that is based on performing antithetic sampling on the Magnetic Hamiltonian Monte Carlo algorithm and 3) We propose the antithetic Magnetic Momentum Hamiltonian Monte Carlo algorithm based on performing antithetic sampling on the Magnetic Momentum Hamiltonian Monte Carlo method. We find that the antithetic Separable Shadow Hamiltonian Hybrid Monte Carlo and antithetic Magnetic Momentum Hamiltonian Monte Carlo algorithms produce effective sample sizes that are higher than antithetic Hamiltonian Monte Carlo on all the benchmark datasets. We further find that antithetic Separable Shadow Hamiltonian Hybrid Monte Carlo and antithetic Magnetic Hamiltonian Monte Carlo produce higher effective sample sizes normalised by execution time in higher dimensions than antithetic Hamiltonian Monte Carlo. In addition, the antithetic versions of all the algorithms have higher effective sample sizes than their non-antithetic counterparts, indicating the usefulness of adding antithetic sampling to Markov Chain Monte Carlo algorithms. The methods are assessed on benchmark datasets using Bayesian logistic regression and Bayesian neural network models.INDEX TERMS Antithetic sampling, bayesian logistic regression, bayesian neural network, hamiltonian monte carlo, machine learning, magnetic hamiltonian monte carlo, shadow hamiltonian, variance reduction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.