International audienceThe crust and upper mantle of the Madagascar continental fragment remained largely unexplored until a series of recent broadband seismic experiments. An island-wide deployment of broadband seismic instruments has allowed the first study of phase velocity variations, derived from surface waves, across the entire island. Late Cenozoic alkaline intraplate volcanism has occurred in three separate regions of Madagascar (north, central and southwest), with the north and central volcanism active until <1 Ma, but the sources of which remains uncertain. Combined analysis of three complementary surface wave methods (ambient noise, Rayleigh wave cross-correlations, and two-plane-wave) illuminate the upper mantle down to depths of 150 km. The phase-velocity measurements from the three methods for periods of 8–182 s are combined at each node and interpolated to generate the first 3-D shear-velocity model for sub-Madagascar velocity structure. Shallow (upper 10 km) low-shear-velocity regions correlate well with sedimentary basins along the west coast. Upper mantle low-shear-velocity zones that extend to at least 150 km deep underlie the north and central regions of recent alkali magmatism. These anomalies appear distinct at depths <100 km, suggesting that any connection between the zones lies at depths greater than the resolution of surface-wave tomography. An additional low-shear velocity anomaly is also identified at depths 50–150 km beneath the southwest region of intraplate volcanism. We interpret these three low-velocity regions as upwelling asthenosphere beneath the island, producing high-elevation topography and relatively low-volume magmatism
S U M M A R YThe lithosphere of Madagascar was initially amalgamated during the Pan-African events in the Neoproterozoic. It has subsequently been reshaped by extensional processes associated with the separation from Africa and India in the Jurassic and Cretaceous, respectively, and been subjected to several magmatic events in the late Cretaceous and the Cenozoic. In this study, the crust and uppermost mantle have been investigated to gain insights into the present-day structure and tectonic evolution of Madagascar. We analysed receiver functions, computed from data recorded on 37 broad-band seismic stations, using the H-κ stacking method and a joint inversion with Rayleigh-wave phase-velocity measurements. The thickness of the Malagasy crust ranges between 18 and 46 km. It is generally thick beneath the spine of mountains in the centre part (up to 46 km thick) and decreases in thickness towards the edges of the island. The shallowest Moho is found beneath the western sedimentary basins (18 km thick), which formed during both the Permo-Triassic Karro rifting in Gondwana and the Jurassic rifting of Madagascar from eastern Africa. The crust below the sedimentary basin thickens towards the north and east, reflecting the progressive development of the basins. In contrast, in the east there was no major rifting episode. Instead, the slight thinning of the crust along the east coast (31-36 km thick) may have been caused by crustal uplift and erosion when Madagascar moved over the Marion hotspot and India broke away from it. The parameters describing the crustal structure of Archean and Proterozoic terranes, including average thickness (40 km versus 35 km), Poisson's ratio (0.25 versus 0.26), average shear-wave velocity (both 3.7 km s -1 ), and thickness of mafic lower crust (7 km versus 4 km), show weak evidence of secular variation. The uppermost mantle beneath Madagascar is generally characterized by shear-wave velocities typical of stable lithosphere (∼4.5 km s -1 ). However, markedly slow shear-wave velocities (4.2-4.3 km s -1 ) are observed beneath the northern tip, central part and southwestern region of the island where the major Cenozoic volcanic provinces are located, implying the lithosphere has been significantly modified in these places.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.