Kernel vitreousness is an important grading characteristic for segregation of subclasses of hard red spring (HRS) wheat in the United States. This research investigated the protein molecular weight distribution (MWD) and the flour and baking quality characteristics of different HRS wheat market subclasses. The U.S. regional crop quality survey samples obtained from six regions for three consecutive growing years were used for subclass segregation based on the dark, hard, and vitreous (DHV) kernel percentage. Flour milled from HRS wheat with greater percentages of DHV kernel showed higher water absorption capacity for breadmaking. Protein MWD parameters could be related to the association between DHV kernel level and water absorption. Specifically, flour protein fractions rich in gliadins and high‐molecular‐weight polymeric proteins in the SDS‐unextractable fraction were identified to have significant and positive correlations with both DHV kernels and flour water absorption levels. An example further showed the importance of flour water absorption on potential economic incentives that can be gained with having a greater percentage of vitreous kernels. This information could help the flour milling and baking industry to segregate the different subclasses of HRS wheat with varying DHV content for their intended end‐use applications.
Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end‐use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, and small kernels, as well as unsorted kernels. The four fractions were milled in three roller mills: Brabender Quadrumat Jr., Quadrumat Sr., and Bühler MLU‐202 laboratory mills. Large kernels had consistently higher flour yield than small kernels across mills, with the Quadrumat Jr. mill showing the lowest flour yield. Mill type and kernel size significantly affected variation in flour protein molecular weight distribution. When compared with larger kernels, flour milled from the small‐kernel fraction contained a higher gliadin fraction and SDS‐unextractable high‐molecular‐weight polymeric proteins, which had positive correlations with bread loaf volume (r = 0.61, P < 0.05) and mixograph peak time (r = 0.84, P < 0.001). Overall, small kernels could contribute to enhancing flour breadmaking quality while having a detrimental effect on milling yield.
Cereal Chem. 93(4):426-434Dark, hard, and vitreous kernel content is an important grading characteristic for hard red spring (HRS) wheat in the United States. This research investigated the associations of kernel vitreousness (KV) and protein content (PC) levels with protein molecular weight distribution (MWD), milling quality, and breadmaking quality characteristics of HRS wheat. The U.S. regional crop quality survey samples from three consecutive growing years were combined into three composite samples with different levels of wheat PC and then further segregated into separate samples with three different levels of KV. Analysis of variance showed that KV level had significant (P < 0.001) effect on variation in test weight, break flour yield, and damaged starch content. Among protein MWD parameters analyzed by size-exclusion HPLC, the high-molecular-weight polymeric proteins in the SDS-unextractable fraction had significant (P < 0.01) association with KV. Regression analysis indicated that addition of KV to the PC level improved the model for both farinograph and baking water absorption values in all three growing years. This information could help the flour milling and baking industries to further segregate HRS wheat based on KV levels in addition to PC levels for their intended end-use applications. † Corresponding
Background and Objective Limited data have been reported on the evaluation of physicochemical characteristics in millstreams (MS) obtained from large‐scale mills for hard red spring (HRS) wheat. Therefore, this research was designed to evaluate the MIAG‐Multomat mill that is a large‐scale experimental mill imitating the commercial flour mills. Findings The MIAG‐Multomat mill yielded different trends across MS for ash and arabinoxylan. Specifically, reduction MS had lower ash content but higher arabinoxylan content than break MS. Moreover, arabinoxylan and other factors such as damaged starch content and coarse particle (over 600‐µm) percent had significant (p < .05) correlations with bread‐making traits including mixograph peak time, water absorption, and bread loaf volume, while ash had nonsignificant correlations with these quality traits. Conclusions This research investigated the influence of physicochemical characteristics on bread‐making quality for the MIAG‐Multomat MS. Overall, the arabinoxylan, starch damage content, and coarse particle percent rather than flour ash content were identified as primary physicochemical components to influence variation of bread‐making traits for MIAG‐Multomat MS for HRS wheat. Significance and Novelty The knowledge on composition of MS obtained in this research is valuable to optimize the functionality of flour blends, especially, in the long‐flow milling of HRS wheat.
Background and objectives Experimental breadmaking is the ultimate test for wheat end‐use quality. This research objective was to investigate the consistency of different breadmaking methods in the evaluation of hard red spring (HRS) wheat. Sponge‐and‐dough method (SpDM) and straight‐dough method (StDM) were tested with varying loaf sizes and fermentation times. Findings For pound loaf breads, SpDM showed larger volume and higher stability among wheat samples than StDM. Correlation and biplot analyses revealed that 2‐hr fermentation was more consistent with pound SpDM than 3‐hr fermentation when flour samples were evaluated by micro‐ and pup loaf StDM. Mixograph, farinograph, extensograph, and solvent retention capacity tests were also evaluated for associations with breadmaking quality. Lactic acid solvent retention capacity had a higher correlation (r = .86, p < .001) with mean breadmaking scores when compared with other parameters. Conclusions The findings of this study indicate that SpDM is more suited for commercial production of pound loaf, while StDM with 2‐hr fermentation is better for quality evaluation because of expediency and consistency in HRS wheat. Lactic acid solvent retention capacity is more adaptable than other flour parameters to predict breadmaking quality, especially when sample quantity is limited. Significance and novelty This research provides valuable insight that helps identify an experimental breadmaking procedure and a flour quality parameter useful for the evaluation of HRS wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.