Abstract. This paper presents an artificial neural network method for long-term prediction of the thermal dynamic parameters of the IBR-2M reactor. Attention is focused mainly on the prediction of the temperature and sodium flow at the entry into the core as well as the thermal power. It is shown that the prediction makes it possible to reduce by a factor of 3 the influence of slow fluctuations of reactivity on the power and thereby reduce the operational requirements for the automatic power stabilization system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.