Arthrobacter sp. strain KI72 grows on a 6-aminohexanoate oligomer, which is a by-product of nylon-6 manufacturing, as a sole source of carbon and nitrogen. We cloned the two genes, nylD and nylE , responsible for 6-aminohexanoate metabolism on the basis of the draft genomic DNA sequence of strain KI72. We amplified the DNA fragments that encode these genes by polymerase chain reaction using a synthetic primer DNA homologous to the 4-aminobutyrate metabolic enzymes. We inserted the amplified DNA fragments into the expression vector pColdI in Escherichia coli, purified the His-tagged enzymes to homogeneity, and performed biochemical studies. We confirmed that 6-aminohexanoate aminotransferase (NylD) catalyzes the reaction of 6-aminohexanoate to adipate semialdehyde using α-ketoglutarate, pyruvate, and glyoxylate as amino acceptors, generating glutamate, alanine, and glycine, respectively. The reaction requires pyridoxal phosphate (PLP) as a cofactor. For further metabolism, adipate semialdehyde dehydrogenase (NylE) catalyzes the oxidative reaction of adipate semialdehyde to adipate using NADP as a cofactor. Phylogenic analysis revealed that NylD should be placed in a branch of the PLP-dependent aminotransferase sub III, while NylE should be in a branch of the aldehyde dehydrogenase superfamily. In addition, we established a NylD/NylE coupled system to quantify the aminotransferase activity and to enable the conversion of 6-aminohexaoate to adipate via adipate semialdehyde with a yield of > 90%. In the present study, we demonstrate that 6-aminohexanoate produced from polymeric nylon-6 and nylon oligomers (i.e., a mixture of 6-aminohexaoate oligomers) by nylon hydrolase (NylC) and 6-aminohexanoate dimer hydrolase (NylB) reactions are sequentially converted to adipate by metabolic engineering technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.