By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as "kokumi taste" and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-protein-coupled receptors T1R1, T1R2, and T1R3 (sweet and umami receptors). We identified a large number of CaSR agonist ␥-glutamyl peptides, including GSH (␥-Glu-Cys-Gly) and ␥-Glu-Val-Gly, and showed that these peptides elicit the kokumi taste. Further analyses revealed that some known CaSR agonists such as Ca 2؉ , protamine, polylysine, L-histidine, and cinacalcet (a calcium-mimetic drug) also elicit the kokumi taste and that the CaSR-specific antagonist, NPS-2143, significantly suppresses the kokumi taste. This is the first report indicating a distinct function of the CaSR in human taste perception.
A series of combretastatin A-4 (CA-4) analogues were synthesized, and their cytotoxic effects against murine Colon 26 adenocarcinoma and inhibitory activity on tubulin polymerization were evaluated. Since CA-4 has limited aqueous solubility, the target compounds were designed to improve solubility by introduction of a nitrogen-containing group. Among the compounds synthesized, those with an amino moiety in place of the phenolic OH of CA-4 showed potent antitubulin activity and cytotoxicity against murine Colon 26 adenocarcinoma in vitro. Some of the compounds which were potent in vitro were evaluated in the murine tumor model Colon 26 in vivo. Among these, 13bHCl, 21aHCl, and 21bHCl showed significant antitumor activity in the animal model, while CA-4 was ineffective. 13bHCl and 21aHCl were further evaluated in two murine tumor models (Colon 38 and 3LL) and human xenografts HCT-15. These compounds showed potent antitumor activity comparable or superior to that of CDDP. The structure-activity relationships of this series of compounds are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.