Although organic light-emitting diodes (OLEDs) are promising for use in applications such as in flexible displays, reports of long-lived flexible OLED-based devices are limited due to the poor environmental stability of OLEDs. Flexible substrates such as plastic allow ambient oxygen and moisture to permeate into devices, which degrades the alkali metals used for the electron-injection layer in conventional OLEDs (cOLEDs). Here, the fabrication of a long-lived flexible display is reported using efficient and stable inverted OLEDs (iOLEDs), in which electrons can be effectively injected without the use of alkali metals. The flexible display employing iOLEDs can emit light for over 1 year with simplified encapsulation, whereas a flexible display employing cOLEDs exhibits almost no luminescence after only 21 d with the same encapsulation. These results demonstrate the great potential of iOLEDs to replace cOLEDs employing alkali metals for use in a wide variety of flexible organic optoelectronic devices.
Reversible and drastic modulation of the transport properties in vanadium dioxide
(VO2) nanowires by electric field-induced hydrogenation at room
temperature was demonstrated using the nanogaps separated by humid air in
field-effect transistors with planer-type gates (PG-FET). These PG-FETs allowed us
to investigate behavior of revealed hydrogen intercalation and diffusion aspects
with time and spatial evolutions in nanowires. These results show that air nanogaps
can operate as an electrochemical reaction field, even in a gaseous atmosphere, and
offer new directions to explore emerging functions for electronic and energy devices
in oxides.
Although significant progress has been made in the development of light-emitting materials for organic light-emitting diodes along with the elucidation of emission mechanisms, the electron injection/transport mechanism remains unclear, and the materials used for electron injection/transport have been basically unchanged for more than 20 years. Here, we unravelled the electron injection/transport mechanism by tuning the work function near the cathode to about 2.0 eV using a superbase. This extremely low-work function cathode allows direct electron injection into various materials, and it was found that organic materials can transport electrons independently of their molecular structure. On the basis of these findings, we have realised a simply structured blue organic light-emitting diode with an operational lifetime of more than 1,000,000 hours. Unravelling the electron injection/transport mechanism, as reported in this paper, not only greatly increases the choice of materials to be used for devices, but also allows simple device structures.
The realisation of a cathode with various work functions (WFs) is required to maximise the potential of organic semiconductors that have various electron affinities. However, the barrier-free contact for electrons could only be achieved by using reactive materials, which significantly reduce the environmental stability of organic devices. We show that a stable electrode with various WFs can be produced by utilising the coordination reaction between several phenanthroline derivatives and the electrode. Although the low WF of the electrode realised by using reactive materials is specific to the material, the WF of the phenanthrolinemodified electrode is tunable depending on the amount of electron transfer associated with the coordination reaction. A phenanthroline-modified electrode that has a higher electron injection efficiency than lithium fluoride has been demonstrated. The observation of various WFs induced by the coordination reaction affords strategic perspectives on the development of stable cathodes unique to organic electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.