We investigated the effect of human umbilical mesenchymal stem cells (HUMSCs) from Wharton's jelly on carbon tetrachloride (CCl 4 )-induced liver fibrosis in rats. Rats were treated with CCl 4 for 4 weeks, and this was followed by a direct injection of HUMSCs into their livers. After 4 more weeks of CCl 4 treatment (8 weeks in all), rats with HUMSC transplants [CCl 4 (8W)ϩHUMSC liver] exhibited a significant reduction in liver fibrosis, as evidenced by Sirius red staining and a collagen content assay, in comparison with rats treated with CCl 4 for 8 weeks without HUMSC transplants [CCl 4 (8W)]. Moreover, rats in the CCl 4 (8W)ϩHUMSC (liver) group had significantly lower levels of serum glutamic oxaloacetic transaminase, glutamic pyruvate transaminase, ␣-smooth muscle actin, and transforming growth factor-1 in the liver, whereas the expression of hepatic mesenchymal epithelial transition factor-phosphorylated type (Met-P) and hepatocyte growth factor was up-regulated, in comparison with the CCl 4 (8W) group. Notably, engrafted HUMSCs scattered mostly in the hepatic connective tissue but did not differentiate into hepatocytes expressing human albumin or ␣-fetoprotein. Instead, these engrafted, undifferentiated HUMSCs secreted a variety of bioactive cytokines that may restore liver function and promote regeneration. Human cytokine assay revealed that the amounts of human cutaneous T cell-attracting chemokine, leukemia inhibitory factor, and prolactin were substantially greater in the livers of the CCl 4 (8W)ϩHUMSC (liver) group, with considerably reduced hepatic inflammation manifested by a micro positron emission tomography scan. Our findings suggest that xenogeneic transplantation of HUMSCs is a novel approach for treating liver fibrosis and may be a promising therapeutic intervention in the future. Liver Transpl 15: 484-495, 2009.
Background and Purpose-Stroke is a cerebrovascular defect that leads to many adverse neurological complications.Current pharmacological treatments for stroke remain unclear in their effectiveness, whereas stem cell transplantation shows considerable promise. Previously, we have shown that human umbilical mesenchymal stem cells (HUMSCs) can differentiate into neurons in neuronal-conditioned medium. Here we evaluate the therapeutic potential of HUMSC transplantation for ischemic stroke in rats. Methods-Focal cerebral ischemia was produced by middle cerebral artery occlusion and reperfusion. The HUMSCs treated with neuronal-conditioned medium or not treated were transplanted into the ischemic cortex 24 hours after surgery. Results-Histology and MRI revealed that rats implanted with HUMSCs treated with neuronal-conditioned medium or not treated exhibited a trend toward less infarct volume and significantly less atrophy compared with the control group, which received no HUMSCs. Moreover, rats receiving HUMSCs showed significant improvements in motor function, greater metabolic activity of cortical neurons, and better revascularization in the infarct cortex. Implanted HUMSCs, treated or not treated, survived in the infarct cortex for at least 36 days and released neuroprotective and growth-associated cytokines, including brain-derived neurotrophic factor, platelet-derived growth factor-AA, basic fibroblast growth factor, angiopoietin-2, CXCL-16, neutrophil-activating protein-2, and vascular endothelial growth factor receptor-3. Conclusions-Our results demonstrate the therapeutic benefits of HUMSC transplantation for ischemic stroke, likely due to the ability of the cells to produce growth-promoting factors. Thus, HUMSC transplantation may be an effective therapy in the future.
Pulmonary fibrosis (PF) is a progressive and irreversible condition with various causes, and no effective treatment has been found to rescue fibrotic lungs. Successful recovery from PF requires inhibiting inflammation, promoting collagen degradation and stimulating alveolar regeneration. Human umbilical mesenchymal stem cells (HUMSCs) not only regulate immune responses but also synthesize and release hyaluronan to improve lung regeneration. This study investigated the feasibility of HUMSC engraftment into rats with bleomycin (BLM)-induced PF to explore HUMSC therapeutic effects/outcomes.Methods: A unique BLM-induced left-lung-dominated PF animal model was established. Rats were transplanted with low-dose (5×106) or high-dose (2.5×107) HUMSCs on Day 21 after BLM injection. Combinations in co-culture of pulmonary macrophages, fibroblasts, HUMSCs treated with BLM and the same conditions on alveolar epithelia versus HUMSCs were evaluated.Results: Rats with high-dose HUMSC engraftment displayed significant recovery, including improved blood oxygen saturation levels and respiratory rates. High-dose HUMSC transplantation reversed alveolar injury, reduced cell infiltration and ameliorated collagen deposition. One month posttransplantation, HUMSCs in the rats' lungs remained viable and secreted cytokines without differentiating into alveolar or vascular epithelial cells. Moreover, HUMSCs decreased epithelial-mesenchymal transition in pulmonary inflammation, enhanced macrophage matrix-metallopeptidase-9 (MMP-9) expression for collagen degradation, and promoted toll-like receptor-4 (TLR-4) expression in the lung for alveolar regeneration. In coculture studies, HUMSCs elevated the MMP-9 level in pulmonary macrophages, released hyaluronan into the medium and stimulated the TLR-4 quantity in the alveolar epithelium.Principal Conclusions: Transplanted HUMSCs exhibit long-term viability in rat lungs and can effectively reverse rat PF.
We evaluated the effects of intra-hippocampal transplantation of human umbilical mesenchymal stem cells (HUMSCs) on pilocarpine-treated rats. Sprague-Dawley rats were divided into the following three groups: (1) a normal group of rats receiving only PBS, (2) a status epilepticus (SE) group of rats with pilocarpine-induced SE and PBS injected into the hippocampi, and (3) a SE+HUMSC group of SE rats with HUMSC transplantation. Spontaneous recurrent motor seizures (SRMS) were monitored using simultaneous video and electroencephalographic recordings at two to four weeks after SE induction. The results showed that the number of SRMS within two to four weeks after SE was significantly decreased in SE+HUMSCs rats compared with SE rats. All of the rats were sacrificed on Day 29 after SE. Hippocampal morphology and volume were evaluated using Nissl staining and magnetic resonance imaging. The results showed that the volume of the dorsal hippocampus was smaller in SE rats compared with normal and SE+HUMSCs rats. The pyramidal neuron loss in CA1 and CA3 regions was more severe in the SE rats than in normal and SE+HUMSCs rats. No significant differences were found in the hippocampal neuronal loss or in the number of dentate GABAergic neurons between normal and SE+HUMSCs rats. Compared with the SE rats, the SE+HUMSCs rats exhibited a suppression of astrocyte activity and aberrant mossy fiber sprouting. Implanted HUMSCs survived in the hippocampus and released cytokines, including FGF-6, amphiregulin, glucocorticoid-induced tumor necrosis factors receptor (GITR), MIP-3β, and osteoprotegerin. In an in vitro study, exposure of cortical neurons to glutamate showed a significant decrease in cell viability, which was preventable by co-culturing with HUMSCs. Above all, the expression of human osteoprotegerin and amphiregulin were significantly increased in the media of the co-culture of neurons and HUMSCs. Our results demonstrate the therapeutic benefits of HUMSC transplantation for the development of epilepsy, which are likely due to the ability of the cells to produce neuroprotective and anti-inflammatory cytokines. Thus, HUMSC transplantation may be an effective therapy in the future.
Tetramethylpyrazine (TMP) is the major component extracted from the Chinese herb, Chuanxiong. This study focuses on the protective effect of tetramethylpyrazine in kainate-induced excitotoxicity in rat hippocampus. Primary neuronal cultures raised from cells isolated from the hippocampi of 7-day old rats were treated with kainate (75-450 microM) for 12, 24, and 48 h. Our results revealed that kainate induced neuronal damage in a dose- and time-dependent manner, reaching maximal damage at 150 microM and 24 h and persisted for higher doses and 48 h. In addition, 1 h of kainate (150 microM) treatment led to significant generation of free radicals and reduction of mitochondrial membrane potential (MMP) which persisted for > or = 4 h on continued exposure. Ten minutes pretreatment with 1 or 5 microM tetramethylpyrazine dose dependently and significantly attenuated the kainate-induced damage. Taken together, the results suggest that multiple mechanisms including protection of mitochondria, decrease in free radical generation and scavenging of free radicals might be involved in TMP's protection against kainate induced cell toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.