Distigmine bromide (distigmine), a reversible, long-lasting cholinesterase (ChE) inhibitor, is used for the treatment of underactive bladder in Japan and has been shown to potentiate urinary bladder (UB) contractility. We studied the duration of distigmine's potentiating effects on acetylcholine (ACh)-induced UB contraction and its inhibitory effects on ChE activity, and compared that with those of other ChE inhibitors (neostigmine, pyridostigmine, and ambenonium). The duration of potentiating/inhibitory effects of ChE inhibitors, including distigmine, on ACh-induced guinea pig UB contraction/ChE activity was evaluated for 12 h following washout. Dissociation rate constants (k) of the inhibitors were also tentatively calculated based on the time courses of their ChE inhibitory effects. The potentiating effect of distigmine (10 −6 M) on AChinduced UB contraction and its inhibitory effect on ChE activity were significantly sustained 12 h after washout. The potentiating effect of other ChE inhibitors on ACh-induced UB contraction, however, was sustained only until 3 h after washout. The ChE inhibitory effects of these inhibitors dissipated in a time-dependent manner after washout, with more than 75% of ChE activity restored by 4 h after washout. The k values of ChE inhibitors approached 0.50 h −1 , except for distigmine, where k could not be determined. Compared with that of other ChE inhibitors, the potentiating effect of distigmine on UB contractile function was significantly more sustainable following washout, which was likely associated with its corresponding long-lasting ChE inhibitory effect. Distigmine may associate more strongly with UB ChE than other ChE inhibitors, which would partly explain its sustained effects.
The present study aimed to investigate the potential inhibitory effects of 21 clinically available hypnotics on acetylcholine (ACh)-induced contractions in rat urinary bladder smooth muscle (UBSM) in order to predict whether these hypnotics could induce voiding impairment. ACh-induced contraction in rat UBSM was inhibited only by diphenhydramine (a histamine H 1 receptor antagonist) at a concentration that was clinically relevant. ACh-induced contraction was also significantly inhibited by flurazepam (a benzodiazepine hypnotic) and suvorexant (an orexin receptor antagonist), albeit at concentrations that substantially exceeded clinically achievable blood levels. These three drugs (at 10 5 M) also inhibited high-KCl (80 mM) Locke-Ringer solution-induced contractions. In contrast to the effects of the abovementioned hypnotics, ACh-induced contractions were not significantly affected by triazolam, etizolam, brotizolam, lormetazepam, estazolam, flunitrazepam, nitrazepam (benzodiazepine hypnotics), thiopental, thiamylal, pentobarbital, amobarbital, secobarbital, phenobarbital (barbiturate hypnotics), zolpidem (an imidazopyridine hypnotic), zopiclone (a cyclopyrrolone hypnotic), ramelteon (a melatonin receptor agonist), bromovalerylurea, and chloral hydrate. These findings suggest that most clinically used hypnotics are not likely to result in anticholinergicinduced dysuria within their clinically achievable blood concentration ranges. Diphenhydramine may, however, induce voiding impairment, an action attributable to diminished UBSM contractility within its clinical dose range.
Introduction: Benzodiazepine anxiolytics are believed to cause urination disorders due to their anticholinergic effects. Objective: This study was carried out to investigate the potential inhibitory effects of 15 clinically available anxiolytics in Japan on acetylcholine (ACh)-induced contractions in rat detrusor smooth muscle (DSM) to predict whether these anxiolytics could induce urination disorders. Methods: Effects of anxiolytics on contractions induced by ACh and 80 mmol/L KCl solution in rat DSM and effects of anxiolytics on specific binding of [N-methyl-3 H]scopolamine ([ 3 H]NMS) in mouse cerebral cortex were investigated. Results and Conclusions: ACh-induced contractions in rat DSM were inhibited by clotiazepam and diazepam (benzodiazepine anxiolytics) at concentrations that were clinically relevant. These contractions were also significantly inhibited by paroxetine, escitalopram (selective serotonin reuptake inhibitors [SSRIs]), and hydroxyzine (a histamine H 1 receptor antagonist), albeit at concentrations that substantially exceeded clinically achievable blood levels. At a concentration of 10-5 mol/L, paroxetine, escitalopram, and hydroxyzine inhibited 80 mmol/L high-KCl solution-induced rat DSM contractions but not clotiazepam and diazepam. Paroxetine, escitalopram, and hydroxyzine also inhibited specific binding of [ 3 H]NMS in mouse cerebral cortex but clotiazepam and diazepam did not. In contrast to the effects of the abovementioned anxiolytics, ACh-induced contractions were not significantly affected by tofisopam, alprazolam, lorazepam, bromazepam, oxazolam, chlordiazepoxide, clonazepam, ethyl loflazepate (benzodiazepine anxiolytics), fluvoxamine (an SSRI), or tandospirone (a serotonin 5-HT 1A receptor agonist). These findings suggest that most clinically used anxiolytics are not likely to result in anticholinergic-induced urination disorders within their clinically achievable blood concentration ranges. However, clotiazepam and diazepam may induce urination disorders within their clinical dose ranges via nonanticholinergic inhibition of DSM contractility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.