The success of anticancer therapy is usually limited by the development of drug resistance. Such acquired resistance is driven, in part, by intratumoural heterogeneity — that is, the phenotypic diversity of cancer cells co-inhabiting a single tumour mass. The introduction of the cancer stem cell (CSC) concept, which posits the presence of minor subpopulations of CSCs that are uniquely capable of seeding new tumours, has provided a framework for understanding one dimension of intratumoural heterogeneity. This concept, taken together with the identification of the epithelial-to-mesenchymal transition (EMT) programme as a critical regulator of the CSC phenotype, offers an opportunity to investigate the nature of intratumoural heterogeneity and a possible mechanistic basis for anticancer drug resistance. In fact, accumulating evidence indicates that conventional therapies often fail to eradicate carcinoma cells that have entered the CSC state via activation of the EMT programme, thereby permitting CSC-mediated clinical relapse. In this Review, we summarize our current understanding of the link between the EMT programme and the CSC state, and also discuss how this knowledge can contribute to improvements in clinical practice.
A critical function of tumor suppressor p53 is the induction of apoptosis in cells exposed to noxious stresses. We report a previously unidentified pro-apoptotic gene, Noxa. Expression of Noxa induction in primary mouse cells exposed to x-ray irradiation was dependent on p53. Noxa encodes a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family of proteins; this member contains the BH3 region but not other BH domains. When ectopically expressed, Noxa underwent BH3 motif-dependent localization to mitochondria and interacted with anti-apoptotic Bcl-2 family members, resulting in the activation of caspase-9. We also demonstrate that blocking the endogenous Noxa induction results in the suppression of apoptosis. Noxa may thus represent a mediator of p53-dependent apoptosis.
SUMMARY Regulatory networks orchestrated by key transcription factors (TFs) have been proposed to play a central role in the determination of stem-cell states. However, the master transcriptional regulators of adult stem cells are poorly understood. We have identified two TFs, Slug and Sox9, that act cooperatively to determine the mammary stem cell (MaSC) state. Inhibition of either Slug or Sox9 blocks MaSC activity in primary mammary epithelial cells. Conversely, transient coexpression of exogenous Slug and Sox9 suffices to convert differentiated luminal cells into MaSCs with long-term mammary gland-reconstituting ability. Slug and Sox9 induce MaSCs by activating distinct auto-regulatory gene expression programs. We also show that coexpression of Slug and Sox9 promotes the tumorigenic and metastasis-seeding abilities of human breast cancer cells and is associated with poor patient survival, providing direct evidence that human breast cancer stem cells are controlled by key regulators similar to those operating in normal murine MaSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.