(3R, 7S)-jasmonoyl-L-isoleucine (JA-Ile) is a lipid-derived plant hormone that regulates plant responses, including biotic/abiotic stress adaptation. In the plant cells, JA-Ile is perceived by COI1-JAZ co-receptor by causing protein-protein interaction between COI1 and JAZ proteins to trigger gene expressions. In this study, we focused on Oryza sativa, a model monocot and an important crop, with 45 possible OsCOI-OsJAZ co-receptor pairs composed of three OsCOI homologs (OsCOI1a, OsCOI1b, and OsCOI2) and 15 OsJAZ homologs. We performed fluorescein anisotropy and pull-down assays to examine the affinity between JA-Ile and OsCOI1a/1b/2-OsJAZ1-15 co-receptor pairs. The results revealed a remarkable difference in the modes of ligand perception by OsCOI1a/1b and OsCOI2. Recently, the unique function of OsCOI2 in some of the JA-responses were revealed. Our current results will lead to the possible development of OsCOI2-selective synthetic ligand.
The oxylipin plant hormone (3R,7S)-jasmonoyl-L-isoleucine [or (+)-7-iso-jasmonoyl-L-isoleucine, JA-Ile] is widely recognized as a plant defense hormone against pathogens and chewing insects. The metabolism of JA-Ile into 12-OH-JA-Ile and 12-COOH-JA-Ile is the central mechanism for the inactivation of JA signaling. Recently, 12-OH-JA-Ile was reported to function as a ligand for the JA-Ile co-receptor COI1-JAZ. However, in previous studies, '12-OH-JA-Ile' used was a mixture of four stereoisomers, the naturally occurring cis-isomer (3R,7S)-12-OH-JA-Ile and the trans-isomer (3R,7R)-12-OH-JA-Ile, and the unnatural cis-isomer (3S,7R)-12-OH-JA-Ile and the trans-isomer (3S,7S)-12-OH-JA-Ile. Thus, the genuine bioactive form of 12-OH-JA-Ile has not yet been identified. In the present study, we prepared pure stereoisomers of 12-OH-JA-Ile and identified (3R,7S)-12-OH-JA-Ile as the naturally occurring bioactive form of 12-OH-JA-Ile and found that it binds to COI1-JAZ9 as effectively as (3R,7S)-JA-Ile. In addition, we revealed that the unnatural trans-isomer (3S,7S)-12-OH-JA-L-Ile functions as another bioactive isomer. The pure (3R,7S)-12-OH-JA-Ile causes partial JAresponsive gene expression without affecting the expression of JAZ8/10, which is involved in the negative feedback regulation of JA-signaling. Thus, (3R,7S)-12-OH-JA-Ile could cause weak and sustainable expression of certain JA-responsive genes until the catabolism of (3R,7S)-12-OH-JA-Ile into (3R,7S)-12-COOH-JA-Ile occurs. The use of chemically pure (3R,7S)-12-OH-JA-Ile confirmed the genuine biological activities of '12-OH-JA-Ile' by excluding the possible effects of other stereoisomers. A chemical supply of pure (3R,7S)-12-OH-JA-Ile with an exact bioactivity profile will enable further detailed studies of the unique role of 12-OH-JA-Ile in planta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.