The administration of certain quinolone antibiotics has been associated with a prolongation of the QT interval on electrocardiogram, and in rare cases ventricular arrhythmias such as torsades de pointes. In this in vivo study using a rabbit arrhythmia model, we assessed the proarrhythmic effects and changes in the QT interval elicited by the administration of NM394 (UFX), an active metabolite of the new quinolone antibiotic prulifloxacin, and three representative quinolones, sparfloxacin (SPFX), gatifloxacin (GFLX) and levofloxacin (LVFX). Chloralose-anesthetized rabbits were co-administered a continuous infusion of methoxamine (15 microg/kg/min) together with NaOH (vehicle, 0.2 mol/L), SPFX (2, 3, 4 mg/kg/min), GFLX (4 mg/kg/min), LVFX (4 mg/kg/min) or UFX (4 mg/kg/min) via the ear vein, and then the effects on electrocardiogram were examined. SPFX and GFLX both prolonged the QT and QTc intervals. GFLX also induced premature ventricular contractions in all 6 rabbits that received it, and subsequently it induced torsades de pointes (TdP) in 3 of the 6 rabbits. SPFX infused at the dose of 4 mg/ kg/min induced conduction blocks without inducing TdP, whereas that infused at the lower dose of 3 mg/ kg/min induced both conduction blocks and TdP. The infusions with LVFX and UFX did not elicit remarkable prolongations in the QT interval, and none of the animals infused with the agents developed arrhythmia. These findings suggested that LVFX and UFX were less potent than SPFX and GFLX in prolonging the QT interval and inducing life-threatening arrhythmias.
An idea to estimate the pressure brought on a human body by his clothes from the measurements on the deformation of the fabric is presented with a few experimental verifications.To this end, an experimental model system is used; a rubber film substrate and a sample fabric model are put on an even stage, and they are fastened by a circular or an elliptical ring; the fabric together with the rubber film is ballooned into a dome-like shape by air pressure; the air pressure measured is a direct estimation for the garment pressure.For the indirect estimation, the strains of the threads are measured and transformed into the tensions through their stress-strain relationships; the garment pressure (P) is calculated through the relation P=N1/R1 +N2/R2, where N1 and N2 are the effective tensions in the directions corresponding to the principal curva tures R1 and R2. The pressure thus estimated coincides approximately with the one measured directly.
Chloral hydrate (CH), an intermediate metabolite of trichloroethylene, is reduced to trichloroethanol (TCE) by alcohol dehydrogenase and aldehyde reductase, and is also oxidized to trichloroacetic acid (TCA) by the nicotinamide adenine dinucleotide (NAD)-dependent enzyme, CH dehydrogenase. Alcohol dehydrogenase requires reduced NAD (NADH), aldehyde reductase requires reduced nicotinamide adenine dinucleotide phosphate (NADPH) and CH dehydrogenase requires NAD to complete the reaction. It is unclear which reaction is predominant at the physiological redox level in intact liver cells. To study this question, we perfused the livers of well-fed rats with Krebs-Ringer buffer solution containing 0.1 mM pyruvate/1.0 mM lactate. The levels of TCE and TCA in the effluent were measured by gas chromatography, and the fluorescence of reduced pyridine nucleotides was measured with a surface fluorometer. When a low concentration (below 0.25 mM) of CH was administered, more TCA than TCE was produced. When a high concentration of CH was administered (over 0.5 mM), TCE production was greater. Reduced pyridine nucleotides decreased inversely with the CH concentration. Even at low CH concentrations, pyridine nucleotides were not reduced. When 10 mM lactate was added to the perfusate in order to reduce the pyridine nucleotides in the liver cells, the TCE/TCA ratio increased. On the other hand, the TCE/TCA ratio tended to fall following the addition of 5.0 mM pyruvate. In conclusion, the TCE/TCA ratio was altered according to the concentration of CH, and to the redox level of pyridine nucleotides in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.