Peroxisomes are apparently missing in Zellweger syndrome; nevertheless, some of the integral membrane proteins of the organelle are present. Their distribution was studied by immunofluorescence microscopy. In control fibroblasts, peroxisomes appeared as small dots. In Zellweger fibroblasts, the peroxisomal membrane proteins were located in unusual empty membrane structures of larger size. These results suggest that the primary defect in this disease may be in the mechanism for import of matrix proteins.
We herein report that mRNA expression of microsomal triglyceride transfer protein (MTP) and its protein synthesis decline in response to sterol depletion in HepG2 cells, and we functionally characterized the MTP gene promoter in an effort to investigate the molecular mechanisms by which MTP gene transcription is regulated. Luciferase assays using truncated versions of the reporter gene revealed that the region at ؊124 to ؉33 base pairs of the human promoter contains the elements required for the suppression of transcription by sterol depletion. Enforced expression of an active form of sterol regulatory element-binding protein (SREBP)-1 (amino acids 1-487) or -2 (amino acids 1-481), both of which are activated under sterol-depleted conditions, is able to mimic sterol-mediated down-regulation. Either further truncation of the promoter region or mutation of the putative SREBP-binding sequence (5-GCAGCCCAC-3, ؊124 to ؊116 base pairs) abolishes the sterol-and SREBPdependent transcriptional regulation. Gel mobility shift assay showed that recombinant SREBP-2-(1-481) is able to bind the sequence. Enforced expression of a truncated form of SREBP-2 (amino acids 31-481), which acts as an inhibitor of transcription of the low density lipoprotein receptor gene because it lacks the transcriptional activation domain, also diminishes the luciferase activity, suggesting that direct binding to the promoter region might be sufficient and that the mechanism by which SREBPs inhibit MTP gene expression is distinct from that for the transcriptional stimulation of sterolregulated genes. Although the SREBP-binding site overlaps a negative insulin-responsive element, insulin negatively regulates MTP gene expression even when the amount of the active form of SREBPs is quite low under the sterol-loaded conditions, indicating that SREBPs only slightly mediate, if at all, the insulin effects. Overall, we conclude that SREBPs are responsible for regulation of lipoprotein secretion via their control of MTP gene expression. Moreover, our results describe for the first time a novel mechanism by which SREBPs negatively regulate expression of the gene encoding the protein involved in lipid metabolism. Microsomal triglyceride transfer protein (MTP)1 plays a critical role in the assembly and secretion of very low density lipoproteins in the liver and chylomicrons in the intestine. MTP exists in the lumen of the endoplasmic reticulum as a heterodimer with protein-disulfide isomerase and is involved in the transfer of triglycerides, cholesterol esters, and phospholipids to newly synthesized apoB (1, 2). In human patients with abetalipoproteinemia, the absence of functional MTP results in a defect in the assembly and secretion of plasma lipoproteins containing apoB (3, 4). In the absence of either MTP lipid transfer activity or sufficient lipid, apoB translocation and lipoprotein assembly are blocked, and apoB is rapidly degraded by a ubiquitin-dependent proteasome process. Under physiological conditions, only a portion of de novo synthesized apoB is ...
ATP-binding cassette (ABC) transporters belong to one of the largest families of membrane proteins, and are present in almost all living organisms from eubacteria to mammals. They exist on plasma membranes and intracellular compartments such as the mitochondria, peroxisomes, endoplasmic reticulum, Golgi apparatus and lysosomes, and mediate the active transport of a wide variety of substrates in a variety of different cellular processes. These include the transport of amino acids, polysaccharides, peptides, lipids and xenobiotics, including drugs and toxins. Three ABC transporters belonging to subfamily D have been identified in mammalian peroxisomes. The ABC transporters are half-size and assemble mostly as a homodimer after posttranslational transport to peroxisomal membranes. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA with differences in substrate specificity, and ABCD3/PMP70 is involved in the transport of long and branched chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation of very long chain fatty acids. Here, we summarize recent advances and important points in our advancing understanding of how these ABC transporters target and assemble to peroxisomal membranes and perform their functions in physiological and pathological processes, including the neurodegenerative disease, X-ALD.
Abstract. An efficient system for the import of newly synthesized proteins into highly purified rat liver peroxisomes was reconstituted in vitro. 35S-Labeled acyl-CoA oxidase (AOx) was incorporated into peroxisomes in a proteinase K-resistant fashion. This import was specific (did not occur with mitochondria) and was dependent on temperature, time, and peroxisome concentration. Under optimal conditions •30% of T hE biogenesis ofperoxisomes has unique features that distinguish it from the assembly of other organelles (21). In rat liver, for example, the peroxisomal matrix proteins, the core protein urate oxidase, and a major 22-kD integral membrane protein are all synthesized on free polyribosomes. Newly synthesized polypeptides are initially located in the cell cytosol and subsequently appear in peroxisomes, as shown by in vivo pulse-chase experiments. These findings imply the posttranslational import of newly synthesized polypeptides by preexisting peroxisomes. In this respect, peroxisome assembly resembles that of mitochondria and chloroplasts, although peroxisomes have only one membrane. In contrast to most other organelle proteins, peroxisomal proteins are generally synthesized at their final sizes and are not processed proteolytically upon import. Moreover, topogenic information is present in the carboxy-terminal region of the one peroxisomal protein so far studied (38).Practically no information is yet available on the details of the import mechanism, including the energy requirements (21). Bellion and Goodman have recently reported (2) that carbonylcyanide-m-chlorophenylhydrazone (CCCP) ~ prevents the import of alcohol oxidase into Candida boidinii peroxisomes. This effect is puzzling in view of the fact that peroxisomal membranes contain pores that allow the passage of molecules as large as 800 D (40). A requirement for ATP has emerged recently as a common factor in posttranslational Portions of this work have appeared in abstract form (1986. Eur. J. CellBiol.
Pex19p is a peroxin involved in peroxisomal membrane biogenesis and probably functions as a chaperone and/or soluble receptor specific for cargo peroxisomal membrane proteins (PMPs). To elucidate the functional constituents of Pex19p in terms of the protein structure, we investigated its domain architecture and binding affinity toward various PMPs and peroxins. The human Pex19p cDNA was overexpressed in Escherichia coli, and a highly purified sample of the Pex19p protein was prepared. When PMP22 was synthesized by cell-free translation in the presence of Pex19p, the PMP22 bound to Pex19p was soluble, whereas PMP22 alone was insoluble. This observation shows that Pex19p plays a role in capturing PMP and maintaining its solubility. In a similar manner, Pex19p was bound to PMP70 and Pex16p as well as the Pex3p soluble fragment. Limited proteolysis analyses revealed that Pex19p consists of the C-terminal core domain flanking the flexible N-terminal region. Separation of Pex19p into its N-and C-terminal halves abolished interactions with PMP22, PMP70, and Pex16p. In contrast, the flexible N-terminal half of Pex19p was bound to the Pex3p soluble fragment, suggesting that the binding mode of Pex3p toward Pex19p differs from that of other PMPs. This idea is supported by our detection of the Pex19p-Pex3p-PMP22 ternary complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.