The formation of a supported planar lipid bilayer (SPLB) and its morphology on step-and-terrace rutile TiO 2(100) surfaces were investigated by fluorescence microscopy and atomic force microscopy. The TiO 2(100) surfaces consisting of atomic steps and flat terraces were formed on a rutile TiO 2 single-crystal wafer by a wet treatment and annealing under a flow of oxygen. An intact vesicular layer formed on the TiO 2(100) surface when the surface was incubated in a sonicated vesicle suspension under the condition that a full-coverage SPLB forms on SiO 2, as reported in previous studies. However, a full-coverage, continuous, fluid SPLB was obtained on the step-and-terrace TiO 2(100) depending on the lipid concentration, incubation time, and vesicle size. The SPLB on the TiO 2(100) also has step-and-terrace morphology following the substrate structure precisely even though the SPLB is in the fluid phase and an approximately 1-nm-thick water layer exists between the SPLB and the substrate. This membrane distortion on the atomic scale affects the phase-separation structure of a binary bilayer of micrometer order. The interaction energy calculated including DLVO and non-DLVO factors shows that a lipid membrane on the TiO 2(100) gains 20 times more energy than on SiO 2. This specifically strong attraction on TiO 2 makes the fluid SPLB precisely follow the substrate structure of angstrom order.
We investigated the influence of surface hydroxyl groups (-OHs) on the supported planar phospholipid bilayer (SPB) formation and characteristics. We prepared SiO2 surfaces with different hydrophilicity degree by annealing the SiO2 layer on Si(100) formed by wet chemical treatments. The hydrophilicity reduced with irreversible thermal desorption of -OHs. We formed SPB of dimyristoylphosphatidylcholine on the SiO2 surfaces by incubation at a 100-nm-filtered vesicle suspension. The formation rate was faster on less hydrophilic surfaces. We proposed that a stable hydrogen-bonded water layer on the SiO2 surface worked as a barrier to prevent vesicle adhesion on the surface. Theoretical calculation indicates that water molecules on vicinal surface -OHs take a stable surface-unique geometry, which disappears on an isolated -OH. The surface -OH density, however, affected little the fluidity of once formed SPBs, which was measured by the fluorescence recovery after the photobleaching method. We also describe the area-selective SPB deposition using surface patterning by the focused ion beam.
Substrate supported planar lipid bilayers (SPBs) are versatile models of the biological membrane in biophysical studies and biomedical applications. We previously developed a methodology for generating SPBs composed of polymeric and fluid phospholipid bilayers by using a photopolymerizable diacetylene phospholipid (DiynePC). Polymeric bilayers could be generated with micropatterns by conventional photolithography, and the degree of polymerization could be controlled by modulating UV irradiation doses. After removing nonreacted monomers, fluid lipid membranes could be integrated with polymeric bilayers. Herein, we report on a quantitative study of the morphology of polymeric bilayer domains and their obstruction toward lateral diffusion of membrane-associated molecules. Atomic force microscopy (AFM) observations revealed that polymerized DiynePC bilayers were formed as nanometer-sized domains. The ratio of polymeric and fluid bilayers could be modulated quantitatively by changing the UV irradiation dose for photopolymerization. Lateral diffusion coefficients of lipid molecules in fluid bilayers were measured by fluorescence recovery after photobleaching (FRAP) and correlated with the amount of polymeric bilayer domains on the substrate. Controlled domain structures, lipid compositions, and lateral mobility in the model membranes should allow us to fabricate model membranes that mimic complex features of biological membranes with well-defined structures and physicochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.