This study 1 retains the meanings of the original text using Autoencoder (AE) in this regard. This study uses the different loss (includes three types) to train the neural network model, hopes that after compressing sentence features, it can still decompress the original input sentences and classify the correct targets, such as positive or negative sentiment. In this way, it supposed to get the more relative features (compressing sentence features) in the sentences to classify the targets, rather than using the classification loss that may classify by the meaningless features (words). In the result, this study discovers that adding additional features for correction of errors does not interfere with the learning. Also, not all words are needed to be restored without distortion after applying the AE method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.