Particle-in-cell (PIC) and fluid simulations of two-plasmon decay (TPD) instability under conditions relevant to inertial confinement fusion show the importance of convective modes. Growing at the lower density region, the convective modes can cause pump depletion and are energetically dominant in the nonlinear stage. The PIC simulations show that TPD saturates due to ion density fluctuations, which can turn off TPD by raising the instability threshold through mode coupling.
A particle-in-cell code is used to investigate the evolution of a density plume moving through a background plasma with supersonic speed directed along the confinement magnetic field. For scale lengths representative of laboratory and auroral phenomena, the major nonlinear effects identified by the present simulations are the formation of a bipolar current system from the ballistic electrons, the appearance of transient potential layers, and the carving of deep density cavities. A 3D magnetic topology is generated by the self-consistent ballistic and diamagnetic currents that accompany highly localized potential layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.