IntroductionTamoxifen, a selective estrogen receptor (ER) modulator, may affect cancer cell survival through mechanisms other than ER antagonism. In the present study, we tested the efficacy of tamoxifen in a panel of ER-negative breast cancer cell lines and examined the drug mechanism.MethodsIn total, five ER-negative breast cancer cell lines (HCC-1937, MDA-MB-231, MDA-MB-468, MDA-MB-453 and SK-BR-3) were used for in vitro studies. Cellular apoptosis was examined by flow cytometry and Western blot analysis. Signal transduction pathways in cells were assessed by Western blot analysis. The in vivo efficacy of tamoxifen was tested in xenograft nude mice.ResultsTamoxifen induced significant apoptosis in MDA-MB-231, MDA-MB-468, MDA-MB-453 and SK-BR-3 cells, but not in HCC-1937 cells. Tamoxifen-induced apoptosis was associated with inhibition of cancerous inhibitor of protein phosphatase 2A (CIP2A) and phospho-Akt (p-Akt) in a dose-dependent manner. Ectopic expression of either CIP2A or Akt protected MDA-MB-231 cells from tamoxifen-induced apoptosis. In addition, tamoxifen increased protein phosphatase 2A (PP2A) activity, and tamoxifen-induced apoptosis was attenuated by the PP2A antagonist okadaic acid in the sensitive cell lines, but not in resistant HCC-1937 cells. Moreover, silencing CIP2A by small interfering RNA sensitized HCC-1937 cells to tamoxifen-induced apoptosis. Furthermore, tamoxifen regulated CIP2A protein expression by downregulating CIP2A mRNA. Importantly, tamoxifen inhibited the in vivo growth of MDA-MB-468 xenograft tumors in association with CIP2A downregulation, whereas tamoxifen had no significant effect on CIP2A expression and anti-tumor growth in HCC-1937 tumors.ConclusionsInhibition of CIP2A determines the effects of tamoxifen-induced apoptosis in ER-negative breast cancer cells. Our data suggest a novel “off-target“ mechanism of tamoxifen and suggest that CIP2A/PP2A/p-Akt signaling may be a feasible anti-cancer pathway.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-014-0431-9) contains supplementary material, which is available to authorized users.
Elevated serum haptoglobin (Hp) is identified as a prognostic marker in multiple types of solid tumors, which is correlated with poor prognosis. HCC is one of the major causes of cancer deaths in worldwide, which remains poor prognosis and is clinically urgent for discovering early diagnostic markers. However, except for serum Hp, the correlation of tumor Hp expression with hepatocellular carcinoma (HCC) progression is still unclear. In this study, we evaluated and identified the tissue Hp expression as a prognostic marker to predict the survival rate of HCC patients. To evaluate the prognostic value of Hp expression for HCC, two cohorts were enrolled in our study, including total 130 matched pair tissue sections (both adjacent non-tumorous and tumor tissue derived from same patient) of HCC patients from Changhua Christian Hospital (CCH) and total 316 RNA-seq data with clinical information of HCC patients from The Cancer Genome Atlas (TCGA) database. In contrast to other types of cancers, HCC tumor tissues have lower Hp protein expression in CCH cohort and have lower Hp mRNA expression in TCGA cohort as compared with adjacent non-tumorous tissues (p < 0.001). Moreover, lower Hp expression is significantly correlated with different stages of HCC cancer differentiation in CCH cohort (one-way ANOVA, p < 0.001). Most importantly, lower Hp expression is highly correlated with poor five-year overall survival rate in TCGA cohort (p < 0.01). Based on our data, we conclude that tissue Hp expression positively correlates with better HCC tumor differentiation and increased five-year overall survival rate of HCC patients. The results indicated that tissue Hp is potentially a prognostic marker for HCC patients. Our findings may further provide a new insight of effective treatments along with biopsy diagnosis of HCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.