Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.
The physical association between the endoplasmic reticulum (ER) and mitochondria, which is known as the mitochondria-associated ER membrane (MAM), has important roles in various cellular ‘housekeeping’ functions including the non-vesicular transports of phospholipids. It has recently become clear that the MAM also enables highly efficient transmission of Ca2+ from the ER to mitochondria to stimulate oxidative metabolism and, conversely, might enable the metabolically energized mitochondria to regulate the ER Ca2+ homeostasis. Recent studies have shed light on molecular chaperones such as calnexin, calreticulin, ERp44, ERp57, grp75 and the sigma-1 receptor at the MAM, which regulate the association between the two organelles. The MAM thus integrates signal transduction with metabolic pathways to regulate the communication and functional interactions between the ER and mitochondrion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.