Adipose-derived stem cells (ASCs) hold promise for cartilage regeneration but their chondrogenesis potential is inferior. Here, we used a baculovirus (BV) system that exploited FLPo/Frt-mediated transgene recombination and episomal minicircle formation to genetically engineer rabbit ASCs (rASCs). The BV system conferred prolonged and robust TGF-β3/BMP-6 expression in rASCs cultured in porous scaffolds, which critically augmented rASCs chondrogenesis and suppressed osteogenesis/hypertrophy, leading to the formation of cartilaginous constructs with improved maturity and mechanical properties in 2-week culture. Twelve weeks after implantation into full-thickness articular cartilage defects in rabbits, these engineered constructs regenerated neocartilages that resembled native hyaline cartilages in cell morphology, matrix composition and mechanical properties. The neocartilages also displayed cartilage-specific zonal structures without signs of hypertrophy and degeneration, and eventually integrated with host cartilages. In contrast, rASCs that transiently expressed TGF-β3/BMP-6 underwent osteogenesis/hypertrophy and resulted in the formation of inferior cartilaginous constructs, which after implantation regenerated fibrocartilages. These data underscored the crucial role of TGF-β3/BMP-6 expression level and duration in rASCs in the cell differentiation, constructs properties and in vivo repair. The BV-engineered rASCs that persistently express TGF-β3/BMP-6 improved the chondrogenesis, in vitro cartilaginous constructs production and in vivo hyaline cartilage regeneration, thus representing a remarkable advance in cartilage engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.