Previous studies proposed energy-efficient solutions, such as multispeed disks and disk spin-down methods, to conserve power in their respective storage systems. However, in most cases, the authors did not analyze the reliability of their solutions. According to research conducted by Google and the IDEMA standard, frequently setting the disk status to standby mode will increase the disk's Annual Failure Rate and reduce its lifespan. To resolve the issue, we propose an evaluation function called E 3 SaRC (Economic Evaluation of Energy Saving with Reliability Constraint), which considers the cost of hardware failure when applying energysaving schemes. We also present an adaptive write cache mechanism called CacheRAID. The mechanism tries to mitigate the random access problems that implicitly exist in RAID techniques and thereby reduce the energy consumption of RAID disks. CacheRAID also addresses the issue of system reliability by applying a control mechanism to the spin-down algorithm. Our experimental results show that the CacheRAID storage system can reduce the power consumption of the conventional software RAID 5 system by 65% to 80%. Moreover, according to the E 3 SaRC measurement, the overall saved cost of CacheRAID is the largest among the systems that we compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.