Abstract-Classical multiuser information theory studies the fundamental limits of models with a fixed (often small) number of users as the coding blocklength goes to infinity. This work proposes a new paradigm, referred to as many-user information theory, where the number of users is allowed to grow with the blocklength. This paradigm is motivated by emerging systems with a massive number of users in an area, such as the Internet of Things. The focus of the current paper is the many-access channel model, which consists of a single receiver and many transmitters, whose number increases unboundedly with the blocklength. Moreover, an unknown subset of transmitters may transmit in a given block and need to be identified as well as decoded by the receiver. A new notion of capacity is introduced and characterized for the Gaussian many-access channel with random user activities. The capacity can be achieved by first detecting the set of active users and then decoding their messages. The minimum cost of identifying the active users is also quantified.
Abstract-This paper proposes a class of rate-compatible LDPC codes, called protograph-based Raptor-like (PBRL) codes. The construction is focused on binary codes for BI-AWGN channels. As with the Raptor codes, additional parity bits are produced by exclusive-OR operations on the precoded bits, providing extensive rate compatibility. Unlike Raptor codes, the structure of each additional parity bit in the protograph is explicitly designed through density evolution. The construction method provides low iterative decoding thresholds and the lifted codes result in excellent error rate performance for long-blocklength PBRL codes. For short-blocklength PBRL codes the protograph design and lifting must avoid undesired graphical structures such as trapping sets and absorbing sets while also seeking to minimize the density evolution threshold. Simulation results are shown in information block sizes of k = 192, 16368 and 16384. Comparing at the same information block size of k = 16368 bits, the PBRL codes outperform the best known standardized code, the AR4JA codes in the waterfall region. The PBRL codes also perform comparably to DVB-S2 codes even though the DVB-S2 codes use LDPC codes with longer blocklengths and are concatenated with outer BCH codes.
Abstract-Multiple reads of the same Flash memory cell with distinct word-line voltages provide enhanced precision for LDPC decoding. In this paper, the word-line voltages are optimized by maximizing the mutual information (MI) of the quantized channel. The enhanced precision from a few additional reads allows frame error rate (FER) performance to approach that of full-precision soft information and enables an LDPC code to significantly outperform a BCH code.A constant-ratio constraint provides a significant simplification in the optimization with no noticeable loss in performance.For a well-designed LDPC code, the quantization that maximizes the mutual information also minimizes the FER in our simulations. However, for an example LDPC code with a high error floor caused by small absorbing sets, the MMI quantization does not provide the lowest frame error rate. The best quantization in this case introduces more erasures than would be optimal for the channel MI in order to mitigate the absorbing sets of the poorly designed code.The paper also identifies a trade-off in LDPC code design when decoding is performed with multiple precision levels; the best code at one level of precision will typically not be the best code at a different level of precision.
This work provides various methods for understanding the mechanism of a novel spinel high-entropy oxide (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 in energy storage applications.
The energy gap of dilute nitride GaAsSbN has been studied. We found that the energy gap reduction induced by nitrogen incorporation is nearly independent of the Sb composition of the alloy, indicating that the conduction band and the valence band can be independently manipulated by incorporating N and Sb, respectively. A “double” band anticrossing (BAC) model, which is a combination of a BAC model for GaAsN and a valence BAC model for GaAsSb with the localized levels and hybridization parameters reported in literatures, has been proposed to fit the energy gap of annealed GaAsSbN samples. The as-grown samples, however, are with lower energy gaps, most likely resulting from the existence of substitutional N pairing and clustering in the alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.