In this paper, we propose and demonstrate a novel interferometer and signal process to retrieve two-dimensional signals with multilevel phases. The interferometer is based on a shearing interferometry with double-frequency grating, and phase-shifting interferometry is derived as a built-in function of the lateral displacement of the grating. The interferometer not only retrieves the multilevel phase signals but also eliminates slow-varying phase errors wherever they occur. Owing to the common path algorithm, the new interferometer is more robust in dynamic circumstances for optical testing and data processing. We propose a pre-integral signal process for two-dimensional (2D) data processing to prevent post-phase-integral due to shearing interferometry. The simulation and experiment showed that the proposed interferometer with a pre-integral process has various advantages in signal processing for multilevel phase retrieval, and will be useful for higher data rates in optical data storage and free-space communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.