Background Metacarpal shaft fractures are a common hand trauma. The current surgical fixation options for such fractures include percutaneous Kirschner wire pinning and nonlocking and locking plate fixation. Although bone plate fixation, compared with Kirschner wire pinning, has superior fixation ability, a consensus has not been reached on whether the bone plate is better placed on the dorsal or lateral side. Objective The purpose of this study was to evaluate the fixation of locking and regular bone plates on the dorsal and lateral sides of a metacarpal shaft fracture. Materials and methods Thirty-five artificial metacarpal bones were used in the experiment. Metacarpal shaft fractures were created using a saw blade, which were then treated with four types of fixation as follows: (1) a locking plate with four locking bicortical screws on the dorsal side (LP_D); (2) a locking plate with four locking bicortical screws on the lateral side (LP_L); (3) a regular plate with four regular bicortical screws on the dorsal side (RP_D); (4) a regular plate with four regular bicortical screws on the lateral side (RP_D); and (5) two K-wires (KWs). All specimens were tested through cantilever bending tests on a material testing system. The maximum fracture force and stiffness of the five fixation types were determined based on the force–displacement data. The maximum fracture force and stiffness of the specimens with metacarpal shaft fractures were first analyzed using one-way analysis of variance and Tukey’s test. Results The maximum fracture force results of the five types of metacarpal shaft fracture were as follows: LP_D group (230.1 ± 22.8 N, mean ± SD) ≅ RP_D group (228.2 ± 13.4 N) > KW group (94.0 ± 17.4 N) > LP_L group (59.0 ± 7.9 N) ≅ RP_L group (44.5 ± 3.4 N). In addition, the stiffness results of the five types of metacarpal shaft fracture were as follows: LP_D group (68.7 ± 14.0 N/mm) > RP_D group (54.9 ± 3.2 N/mm) > KW group (20.7 ± 5.8 N/mm) ≅ LP_L group (10.6 ± 1.7 N/mm) ≅ RP_L group (9.4 ± 1.2 N/mm). Conclusion According to our results, the mechanical strength offered by lateral plate fixation of a metacarpal shaft fracture is so low that even KW fixation can offer relatively superior mechanical strength; this is regardless of whether a locking or nonlocking plate is used for lateral plate fixation. Such fixation can reduce the probability of extensor tendon adhesion. Nevertheless, our results indicated that when lateral plate fixation is used for fixating a metacarpal shaft fracture in a clinical setting, whether the mechanical strength offered by such fixation would be strong enough to support bone union remains questionable.
Background Metacarpal shaft fractures are a common type of hand fracture. Despite providing strong fixation strength, plate fixation has numerous shortcomings. Concerning internal fixation with Kirschner wires (K-wires), although this approach is frequently used to treat metacarpal shaft fractures, the lack of functional stability may result in fixation failure. Objective To evaluate the effect of figure-of-eight cerclage wire on fixation for transverse metacarpal shaft fractures using two K-wires. Materials and methods We used a saw blade to create transverse metacarpal shaft fractures in 14 fourth-generation artificial third metacarpal bones (Sawbones, Vashon, WA, USA), which were assigned to groups undergoing fixation with two K-wires (KP) or with two K-wires and figure-of-eight cerclage wire (KP&F8). All specimens were subjected to material testing, specifically cantilever bending tests. The maximum fracture force and stiffness of the two fixation types were determined on the basis of the force–displacement data. The Mann–Whitney U test was used to compare between-group differences in maximum fracture force and stiffness. Results The maximum fracture force of the KP group (median ± interquartile range = 97.30 ± 29.70 N) was significantly lower than that of the KP&F8 group (153.2 ± 69.50 N, p < 0.05; Figure 5a), with the median of the KP&F8 group exceeding that of the KP group by 57.5%. Similarly, stiffness was significantly lower in the KP group (18.14 ± 9.84 N/mm) than in the KP&F8 group (38.25 ± 23.49 N/mm; p < 0.05; Figure 5b), with the median of the KP&F8 group exceeding that of the KP group by 110.9%. Conclusion The incorporation of a figure-of-eight cerclage wire increased the maximum fracture force and stiffness by 57.5 and 110.9%, respectively, compared with those achieved in standard two K-wire fixation. Therefore, hand surgeons are advised to consider the proposed approach to increase fixation strength.
Background Metacarpal shaft fracture is a common fracture in hand trauma injuries. Surgical intervention is indicated when fractures are unstable or involve considerable displacement. Current fixation options include Kirschner wire, bone plates, and intramedullary headless screws. Common complications include joint stiffness, tendon irritation, implant loosening, and cartilage damage. Objective We propose a modified fixation approach using headless compression screws to treat transverse or short-oblique metacarpal shaft fracture. Materials and methods We used a saw blade to model transverse metacarpal neck fractures in 28 fresh porcine metacarpals, which were then treated with the following four fixation methods: (1) locked plate with five locked bicortical screws (LP group), (2) regular plate with five bicortical screws (RP group), (3) two Kirschner wires (K group), and (4) a headless compression screw (HC group). In the HC group, we proposed a novel fixation model in which the screw trajectory was oblique to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; thus, the screw did not damage the articular cartilage. The specimens were tested using a modified three-point bending test on a material testing system. The maximum fracture forces and stiffness values of the four fixation types were determined by observing the force–displacement curves. Finally, the Kruskal–Wallis test was adopted to process the data, and the exact Wilcoxon rank sum test with Bonferroni adjustment was performed to conduct paired comparisons among the groups. Results The maximum fracture forces (median ± interquartile range [IQR]) of the LP, RP, HC, and K groups were 173.0 ± 81.0, 156.0 ± 117.9, 60.4 ± 21.0, and 51.8 ± 60.7 N, respectively. In addition, the stiffness values (median ± IQR) of the LP, HC, RP, and K groups were 29.6 ± 3.0, 23.1 ± 5.2, 22.6 ± 2.8, and 14.7 ± 5.6 N/mm, respectively. Conclusion Headless compression screw fixation provides fixation strength similar to locked and regular plates for the fixation of metacarpal shaft fractures. The headless screw was inserted obliquely to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; therefore the articular cartilage iatrogenic injury can be avoidable. This modified fixation method may prevent tendon irritation and joint cartilage violation caused by plating and intramedullary headless screw fixation.
Background The treatment of mallet fracture using hook plate fixation was first introduced in 2007 and has subsequently shown excellent outcomes. Common complications, such as nail deformity and screw loosening, have also been reported. Very few studies have focused on these common complications or their prevention. In this study, we present the clinical outcomes and complications of our case series and describe the pitfalls and detailed solution of surgical tips to avoid common complications related to this procedure. Methods The retrospective case series of 16 patients with mallet fractures who underwent open reduction and hook plate fixation in our hospital from 2015 to 2020 were retrospectively reviewed. Data on extension lag, range-of-motion (ROM) of the distal interphalangeal joint (DIP) joint, the Disabilities of the Arm, Shoulder, and Hand (DASH) score, and surgical complications were collected and analysed. The clinical outcome was graded according to the Crawford mallet finger criteria. Results Sixteen patients were included in our analysis. The median DIP extension lag was 0° (range, 0° to 30°) and the median active DIP flexion angle was 60° (range, 40° to 90°). The median DASH score was 0 (range, 0–11.3). Fourteen patients with good and excellent results were satisfied with this treatment. The Complication rate in our patient series was 18%. Common complications reported in articles included wound necrosis, extension lag, nail deformity, and plate loosening. Conclusions Despite the fact that the treatment of mallet fracture with hook plate fixation has satisfactory functional outcomes, pitfalls, including iatrogenic nail germinal matrix injury, unnecessary soft tissue dissection, and insufficient screw purchase, were still reported. To avoid complications, we suggest modifications of the skin incision, soft tissue dissection, and screw position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.