Using third harmonic generation (THG) microscopy, we demonstrate that granularity differences of leukocytes can be revealed without a label. Excited by a 1230 nm femtosecond laser, THG signals were generated at a significantly higher level in neutrophils than other mononuclear cells, whereas signals in agranular lymphocytes were one order of magnitude smaller. Interestingly, the characteristic THG features can also be observed in vivo to track the newly recruited leukocytes following lipopolysaccharide (LPS) challenge. These results suggest that label-free THG imaging may provide timely tracking of leukocyte movement without disturbing the normal cellular or physiological status.
Using in vivo second harmonic generation (SHG) and third harmonic generation (THG) microscopies, we tracked the course of collagen remodeling over time in the same melanoma microenvironment within an individual mouse. The corresponding structural and morphological changes were quantitatively analyzed without labeling using an orientation index (OI), the gray level co-occurrence matrix (GLCM) method, and the intensity ratio of THG to SHG (RTHG/SHG). In the early stage of melanoma development, we found that collagen fibers adjacent to a melanoma have increased OI values and SHG intensities. In the late stages, these collagen networks have more directionality and less homogeneity. The corresponding GLCM traces showed oscillation features and the sum of squared fluctuation VarGLCM increased with the tumor sizes. In addition, the THG intensities of the extracellular matrices increased, indicating an enhanced optical inhomogeneity. Multiplying OI, VarGLCM, and RTHG/SHG together, the combinational collagen remodeling (CR) index at 4 weeks post melanoma implantation showed a 400-times higher value than normal ones. These results validate that our quantitative indices of SHG and THG microscopies are sensitive enough to diagnose the collagen remodeling in vivo. We believe these indices have the potential to help the diagnosis of skin cancers in clinical practice.
Functional human insulin-Au nanodots (NDs) are synthesized for the in vivo imaging of insulin metabolism. Benefiting from its efficient red to near infrared fluorescence, deep tissue subcellular uptake of insulin-Au NDs can be clearly resolved through a least-invasive harmonic generation and two-photon fluorescence (TPF) microscope. In vivo investigations on mice ear and ex vivo assays on human fat tissues conclude that cells with rich insulin receptors have higher uptake of administrated insulin. Interestingly, the insulin-Au NDs can even permeate into lipid droplets (LDs) of adipocytes. Using this newly discovered metabolic phenomenon of insulin, it is found that enlarged adipocytes in type II diabetes mice have higher adjacent/LD concentration contrast with small-sized ones in wild type mice. For human clinical samples, the epicardial adipocytes of patients with diabetes and coronary artery disease (CAD) also show elevated adjacent/LD concentration contrast. As a result, human insulin-Au nanodots provide a new approach to explore subcellular insulin metabolism in model animals or patients with metabolic or cardiovascular diseases.
BackgroundGrana and starch are major functional structures for photosynthesis and energy storage of plant, respectively. Both exhibit highly ordered molecular structures and appear as micrometer-sized granules inside chloroplasts. In order to distinguish grana and starch, we used multiphoton microscopy, with simultaneous acquisition of two-photon fluorescence (2PF) and second harmonic generation (SHG) signals. SHG is sensitive to crystallized structures while 2PF selectively reveals the distribution of chlorophyll.ResultThree distinct microstructures with different contrasts were observed, i.e. “SHG dominates”, “2PF dominates”, and “SHG collocated with 2PF”. It is known that starch and grana both emit SHG due to their highly crystallized structures, and no autofluorescence is emitted from starch, so the “SHG dominates” contrast should correspond to starch. The contrast of “SHG collocated with 2PF” is assigned to be grana, which exhibit crystallized structure with autofluorescent chlorophyll. The “2PF dominates” contrast should correspond to stroma thylakoid, which is a non-packed membrane structure with chrolophyll. The contrast assignment is further supported by fluorescence lifetime measurement.ConclusionWe have demonstrated a straightforward and noninvasive method to identify the distribution of grana and starch within an intact leaf. By merging the 2PF and SHG images, grana, starch and stroma thylakoid can be visually distinguished. This approach can be extended to the observation of 3D grana distribution and their dynamics in living plants.
Emerging advances in iron oxide nanoparticles exploit their high magnetization for various applications, such as bioseparation, hyperthermia, and magnetic resonance imaging. In contrast to their excellent magnetic performance, the harmonic generation and luminescence properties of iron oxide nanoparticles have not been thoroughly explored, thus limiting their development as a tool in photomedicine. In this work, a seed/growth‐inspired synthesis is developed combined with primary mineralization and a ligand‐assisted secondary growth strategy to prepare mesostructured α‐FeOOH nanorods (NRs). The sub‐wavelength heterogeneity of the refractive index leads to enhanced third‐harmonic generation (THG) signals under near‐infrared excited wavelengths at 1230 nm. The as‐prepared NRs exhibit an 11‐fold stronger THG intensity compared to bare α‐FeOOH NRs. Using these unique nonlinear optical properties, it is demonstrated that mesostructured α‐FeOOH NRs can serve as biocompatible and nonbleaching contrast agents in THG microscopy for long‐term labeling of cells as well as in angiography in vivo by modifying lectin to enhance the binding efficiency to the glycocalyx layers on the wall of blood vessels. These results provide a new insight into Fe‐based nanoplatforms capable of emitting coherent light as molecular probes in optical microscopy, thus establishing a complementary microscopic imaging method for macroscopic magnetic imaging systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.