The Eph-ephrin receptor-ligand system is implicated in cell behavior and morphology. EphA1 is the founding member of the Eph receptors, but little is known about its function. Here, we show that activation of EphA1 kinase inhibits cell spreading and migration in a RhoA-ROCK-dependent manner. We also describe a novel interaction between EphA1 and integrin-linked kinase (ILK), a mediator of interactions between integrin and the actin cytoskeleton. The C-terminal sterile α motif (SAM) domain of EphA1 is required and the ankyrin region of ILK is sufficient for the interaction between EphA1 and ILK. The interaction is independent of EphA1 kinase activity but dependent on stimulation of the EphA1 ligand ephrin-A1. Activation of EphA1 kinase resulted in a decrease of ILK activity. Finally, we demonstrated that expression of a kinase-active form of ILK (S343D) rescued the EphA1-mediated spreading defect, and attenuated RhoA activation. These results suggest that EphA1 regulates cell morphology and motility through the ILK-RhoA-ROCK pathway.
Eph receptor tyrosine kinases and their ephrin ligands have been implicated in neuronal development and neovascularization. Overexpression of ephrin-A1 has been implicated in tumor progression and poor prognosis. However, the mechanisms are not clear. Here, we report a role of the Eph/ephrin system in a cell adhesion mechanism. Clustered erythropoietin-producing hepatocellular receptor A1 (EphA1)/ephrin-A1 complexes on the plasma membrane did not undergo endocytosis, and the cell remained adherent to one another. The cell-cell contacts were maintained in an Eph tyrosine kinase activity-independent manner even in the absence of E-cadherin. EphA1 and ephrin-A1 co-localized in pulmonary endothelial cells, and regulated vascular permeability and metastasis in the lungs. We identified ADAM12 (A disintegrin and metalloproteinase 12) as an EphA1-binding partner by yeast two-hybrid screening and found that ADAM12 enhanced ephrin-A1 cleavage in response to transforming growth factor-β1 in primary tumors. Released soluble ephrin-A1 in the serum deteriorated the EphA1/ephrin-A1-mediated cell adhesion in the lungs in an endocrine manner, causing lung hyperpermeability that facilitated tumor cell entry into the lungs. Depletion of soluble ephrin-A1 by its neutralizing antibody significantly inhibited lung metastasis.
Serum amyloid A (SAA) 3 is a major component of the acute phase of inflammation. We previously reported that SAA3 served as an endogenous peptide ligand for TLR4 to facilitate lung metastasis. Because these experiments were performed with SAA3 recombinant proteins purified from Escherichia coli or mammalian cells, we could not rule out the possibility of LPS contamination. In this study, we used SAA3 synthetic peptides to eliminate the presence of LPS in SAA3. We found that the SAA3 synthetic peptide (aa 20–86) (20–86) stimulated cell migration and activated p38 in a manner dependent on TLR4, MD-2, and MyD88. SAA3 (20–86) also activated NF-κB and Rho small GTPase. Using surface plasmon resonance analysis, the binding constant KD values between SAA3 (20–86) or SAA3 (43–57) and TLR4/MD-2 protein highly purified by the baculovirus system were 2.2 and 30 μM, respectively. FLAG-tagged SAA3 tightly bound to protein A–tagged MD-2, but not to TLR4 in baculovirus coinfection experiments. Although SAA3 (20–86) caused a low, but appreciable level of endocytosis in TLR4, it induced the upregulation of both IL-6 and TNF-α, but not IFN-β1. An i.v. injection of SAA3 (43–57) induced the lung recruitment of CD11b+Gr-1+ cells at an estimated serum concentration around its KD value toward TLR4/MD-2. Taken together, these results suggest that SAA3 directly binds MD-2 and activates the MyD88-dependent TLR4/MD-2 pathway.
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.