Porous crystals are excellent materials with potential spatial functions through molecular encapsulation within the pores. Co-encapsulation of multiple different molecules further expands their usability and designability. Herein we report the simultaneous arrangement of up to three different guest molecules, TTF (tetrathiafulvalene), ferrocene, and fluorene, on the pore surfaces of a porous crystalline metal-macrocycle framework (MMF). The position and orientation of adsorbed molecules arranged in the pore were determined by single-crystal X-ray diffraction analysis. The anchoring effect of hydrogen bonds between the hydroxy groups of the guest molecules and inter-guest cooperation and competition are significant factors in the adsorption behaviors of the guest molecules. This finding would serve as a design basis of multicomponent functionalized nanospaces for elaborate reactions that are realized in enzymes.
A new series of calix[n]arene analogues, benzimidazole[3]arenes, was rationally synthesized by CuII-catalyzed post-macrocyclization transformation of a tris(o-phenylenediamine) macrocycle, and fully characterized by NMR, MS, and single-crystal X-ray diffraction (XRD) analyses.
Non-covalent immobilisation of catalysts in nanoporous materials is a promising way to apply homogeneous catalysts to heterogeneous catalytic reactions. Herein we report a size-specific catalytic reaction with an acid catalyst, p-toluenesulfonic acid, immobilised in a porous molecular crystal, metal-macrocycle framework (MMF), composed of metallo-macrocycles. A tritylated substrate which is smaller than the pore dimension of MMF was deprotected by the heterogeneous catalyst, whereas the reaction with a larger substrate was completely suppressed due to the steric restriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.