The design progress in a compact low aspect ratio (low A) DEMO reactor, ‘SlimCS’, and its design issues are reported. The design study focused mainly on the torus configuration including the blanket, divertor, materials and maintenance scheme. For continuity with the Japanese ITER-TBM, the blanket is based on a water-cooled solid breeder blanket. For vertical stability of the elongated plasma and high beta access, the blanket is segmented into replaceable and permanent blankets and a sector-wide conducting shell is arranged inbetween these blankets. A numerical calculation indicates that fuel self-sufficiency can be satisfied when the blanket interior is ideally fabricated. An allowable heat load to the divertor plate should be 8 MW m−2 or lower, which can be a critical constraint for determining a handling power of DEMO.
The development of tritium breeder, neutron multiplier and flow channel insert materials for the breeding blanket of the DEMO reactor is reviewed. Present emphasis is on the ITER test blanket module (TBM); lithium metatitanate (Li 2 TiO 3 ) and lithium orthosilicate (Li 4 SiO 4 ) pebbles have been developed by leading TBM parties. Beryllium pebbles have been selected as the neutron multiplier. Good progress has been made in their fabrication; however, verification of the design by experiments is in the planning stage. Irradiation data are also limited, but the decrease in thermal conductivity of beryllium due to irradiation followed by swelling is a concern. Tests at ITER are regarded as a major milestone. For the DEMO reactor, improvement of the breeder has been attempted to obtain a higher lithium content, and Be 12 Ti and other beryllide intermetallic compounds that have superior chemical stability have been studied. LiPb eutectic has been considered as a DEMO blanket in the liquid breeder option and is used as a coolant to achieve a higher outlet temperature; a SiC flow channel insert is used to prevent magnetohydrodynamic pressure drop and corrosion. A significant technical gap between ITER TBM and DEMO is recognized, and the world fusion community is working on ITER TBM and DEMO blanket development in parallel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.