Acquiring three-dimensional (3-D) information becomes increasingly important for the development of block copolymer (BCP) directed self-assembly (DSA) lithography, as two-dimensional imaging is no longer sufficient to describe the 3-D nature of DSA morphology and probe hidden structures under the surface. Using the post-DSA membrane fabrication technique and scanning transmission electron microscopy tomography, we were able to characterize the 3-D structures of BCP in graphoepitaxial DSA hole shrink process. Different DSA structures of singlets formed in templated holes with different surface chemistry and geometry were successfully captured and their 3-D shapes were reconstructed from tomography data. The results reveal that strong polystyrene-preferential sidewalls are necessary to create vertical DSA cylinders and that template size outside of process window could result in defective DSA results in 3-D. Our study as well as the established 3-D metrology would greatly help to develop a fundamental understanding of the key DSA factors for optimizing the graphoepitaxial hole shrink process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.