An asymmetric ring-opening reaction of meso-aziridines with TMSN3 was developed using a catalyst prepared from Y(OiPr)3 and chiral ligand 2 in a 1:2 ratio. Excellent enantioselectivity was realized from a wide range of substrates with a practical catalyst loading. The products were efficiently converted to enantiomerically enriched 1,2-diamines, which are versatile chiral building blocks for pharmaceuticals and chiral ligands. This reaction was applied to a catalytic asymmetric synthesis of Tamiflu, a very important anti-influenza drug containing a chiral 1,2-diamino functionality.
The dearomative dicarboxylation of stable heteroaromatics using CO 2 is highly challenging but represents a very powerful method for producing synthetically useful dicarboxylic acids, which can potentially be employed as intermediates of biologically active molecules such as natural products and drug leads. However, these types of transformations are still underdeveloped, and concise methodologies with high efficiency (e.g., high yield and high selectivity for dicarboxylations) have not been reported. We herein describe a new electrochemical protocol using the CO 2 radical anion (E 1/2 of CO 2 = −2.2 V in DMF and −2.3 V in CH 3 CN vs SCE) that produces unprecedented trans-oriented 2,3-dicarboxylic acids from N-Ac-, Boc-, and Ph-protected indoles that exhibit highly negative reduction potentials (−2.50 to −2.94 V). On the basis of the calculated reduction potentials, Nprotected indoles with reduction potentials up to −3 V smoothly undergo the desired dicarboxylation. Other heteroaromatics, including benzofuran, benzothiophene, electron-deficient furans, thiophenes, 1,3-diphenylisobenzofuran, and N-Boc-pyrazole, also exhibit reduction potentials more positive than −3 V and served as effective substrates for such dicarboxylations. The dicarboxylated products thus obtained can be derivatized into useful synthetic intermediates for biologically active compounds in few steps. We also show how the dearomative monocarboxylation can be achieved selectively by choice of the electrolyte, solvent, and protic additive; this strategy was then applied to the synthesis of an octahydroindole-2-carboxylic acid (Oic) derivative, which is a useful proline analogue.
One of the most challenging transformations in current organic chemistry is the catalytic carboxylation of a C(sp(3))-H bond using CO(2) gas, an inexpensive and ubiquitous C1 source. A sequential protocol for C(sp(3))-H carboxylation by employing a nitrogen-directed, metal-assisted, C-H activation/catalytic silylation reaction in conjunction with fluoride-mediated carboxylation with CO(2) was established. The carboxylation proceeded only at the benzylic C(sp(3))-Si bond, not at the aromatic C(sp(2))-Si, which is advantageous for further manipulations of the products.
Catalytic carboxylation of the allylic C(sp)-H bond of terminal alkenes with CO was developed with the aid of a Co/Xantphos complex. A wide range of allylarenes and 1,4-dienes were successfully transformed into the linear styrylacetic acid and hexa-3,5-dienoic acid derivatives in moderate to high yields, with excellent regioselectivity. The carboxylation showed remarkable functional group tolerability, so that selective addition to CO occurred in the presence of other carbonyl groups such as amide, ester, and ketone. Since styrylacetic acid derivatives can be readily converted into optically active γ-butyrolactones through Sharpless asymmetric dihydroxylation, this allylic C(sp)-H carboxylation showcases a facile synthesis of γ-butyrolactones from simple allylarenes via short steps.
Compared to carbon-based nucleophiles, the number of silicon-based nucleophiles that is currently available remains limited, which significantly hampers the structural diversity of synthetically accessible silicon-based molecules. Given the high synthetic utility and ease of handling of carbon-based boron nucleophiles, silicon-based boron nucleophiles, i.e., silylboranes, have received considerable interest in recent years as nucleophilic silylation reagents that are activated by transition-metal catalysts or bases. However, the range of practically accessible silylboranes remains limited. In particular, the preparation of sterically hindered and functionalized silylboranes remains a significant challenge. Here, we report the use of rhodium and platinum catalysts for the direct borylation of hydrosilanes with bis(pinacolato)diboron, which allows the synthesis of new trialkylsilylboranes that bear bulky alkyl groups and functional groups as well as new dialkylarylsilylboranes that are difficult to synthesize via conventional methods using alkali metals. We further demonstrate that these compounds can be used as silicon nucleophiles in organic transformations, which significantly expands the scope of synthetically accessible organosilicon compounds compared to previously reported methods. Thus, the present study can be expected to inspire the development of efficient methods for novel silicon-containing bioactive molecules and organic materials with desirable properties. We also report the first 11 B{ 1 H} and 29 Si{ 1 H} NMR spectroscopic evidence for the formation of i-Pr3SiLi generated by the reaction of i-Pr3Si-B(pin) with MeLi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.