Protein L-isoaspartyl methyltransferase (PIMT) is suggested to play a role in the repair of aged protein spontaneously incorporated with isoaspartyl residues. We generated PIMT-deficient mice by targeted disruption of the PIMT gene to elucidate the biological role of the gene in vivo. PIMT-deficient mice died from progressive epileptic seizures with grand mal and myoclonus between 4 and 12 weeks of age. An anticonvulsive drug, dipropylacetic acid (DPA), improved their survival but failed to cure the fatal outcome. L-Isoaspartatate, the putative substrate for PIMT, was increased ninefold in the brains of PIMT-deficient mice. The brains of PIMT-deficient mice started to enlarge after 4 weeks of age when the apical dendrites of pyramidal neurons in cerebral cortices showed aberrant arborizations with disorganized microtubules. We conclude that methylation of modified proteins with isoaspartyl residues is essential for the maintenance of a mature CNS and that a deficiency in PIMT results in fatal progressive epilepsy in mice.
Myosin X is involved in the reorganization of the actin cytoskeleton and protrusion of filopodia. Here we studied the molecular mechanism by which bovine myosin X is regulated. The globular tail domain inhibited the motor activity of myosin X in a Ca(2+)-independent manner. Structural analysis revealed that myosin X is monomeric and that the band 4.1-ezrin-radixin-moesin (FERM) and pleckstrin homology (PH) domains bind to the head intramolecularly, forming an inhibited conformation. Binding of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P(3)) to the PH domain reversed the tail-induced inhibition and induced the formation of myosin X dimers. Consistently, disruption of the binding of PtdIns(3,4,5)P(3) attenuated the translocation of myosin X to filopodial tips in cells. We propose the following mechanism: first, the tail inhibits the motor activity of myosin X by intramolecular head-tail interactions to form the folded conformation; second, phospholipid binding reverses the inhibition and disrupts the folded conformation, which induces dimer formation, thereby activating the mechanical and cargo transporter activity of myosin X.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.