Drosophila Mxc protein is a component of the histone locus body (HLB), which is required for the expression of canonical histone genes, and severe mxc mutations generate tumors in larval hematopoietic tissues. A common characteristic of cancer cells is chromosomal instability (CIN), but whether mxc mutants exhibit this feature is unknown. Here, examination of post-meiotic spermatids created after male meiosis revealed that a fraction of the spermatids in hypomorphic mxc G46 mutants contained extra micronuclei or abnormally sized nuclei, corresponding to CIN. Moreover, we observed that the so-called lagging chromosomes retained between chromosomal masses separated toward spindle poles at telophase I. Time-lapse recordings show that micronuclei were generated from lagging chromosomes, and the abnormal chromosomes in mxc G46 mutants lacked centromeres. In normal spermatocyte nuclei, the HLB component FLASH colocalized with Mxc, whereas FLASH was dispersed in mxc G46 spermatocyte nuclei. Furthermore, we observed genetic interactions between Mxc and other HLB components in meiotic chromosome segregation, which suggests that inhibition of HLB formation is responsible for aberrant chromosome segregation in mxc G46. Quantitative real-time PCR revealed that canonical histone mRNA levels were decreased in mxc G46. Lastly, similar meiotic phenotypes appeared in the spermatids of histone H4 mutants and in the spermatids in testes depleted for chromosome-construction factors. Considering these genetic data, we propose that abnormal chromosome segregation leading to CIN development results from a loss of chromosome integrity caused by diminished canonical histone levels in mxc mutants.
After centrosome duplication, centrioles elongate before the M phase. To identify genes required for this process and understand the regulatory mechanism, we investigated the centrioles in Drosophila premeiotic spermatocytes, expressing fluorescently tagged centrioles. We demonstrated that an essential microtubule polymerisation factor, Orbit/CLASP, accumulated at the distal end of centrioles and was required for the elongation. Conversely, a microtubule severing factor, Klp10A, shortened the centrioles. Genetic analyses revealed that these two proteins functioned antagonistically for determining centriole length. Furthermore, Cp110 in the distal tip complex was closely associated with the factors involved in centriolar dynamics at the distal end. We observed loss of centriole integrity, including fragmentation of centrioles and earlier separation of the centriole pairs in Cp110 null mutant cells either overexpressing Orbit or harbouring Klp10A depletion. Excess centriole elongation in the absence of the distal tip complex resulted in the loss of centriole integrity, leading to the formation of multipolar spindle microtubules emanating from centriole fragments, even when they are unpaired. Our findings contribute to understanding the mechanism of centriole integrity, leading to chromosome instability in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.