Skin thickness, including the adipose layer, which varies from individual to individual, affects the bone density measurement using light. In this study, we proposed a method to measure skin thickness using light and to correct the bias caused by differences in skin thickness and verified the proposed method by experiments using a phantom. We measured simulated skin of different thicknesses and bovine trabecular bone of different bone mineral densities (BMDs) using an optical system consisting of lasers of 850 and 515 nm wavelengths, lenses, and slits. Although the slope of the light intensity distribution formed on the surface of the material when irradiated by the 850 nm laser is affected by the thickness of the skin phantom. The difference of the intensity distribution peaks (δy) between the 850 and 515 nm lasers was strongly correlated with the thickness of the skin phantom. The coefficient of determination between the measurements and the BMD was improved by correcting the 850 nm laser measurements with δy. This result suggests that the method is applicable to optical bone densitometry, which is insensitive to differences in skin thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.