Only two polyethylene glycol terephthalate (PET)-degrading enzymes have been reported, and their mechanism for the biochemical degradation of PET remains unclear. To identify a novel PET-degrading enzyme, a putative cutinase gene (cut190) was cloned from the thermophile Saccharomonospora viridis AHK190 and expressed in Escherichia coli Rosetta-gami B (DE3). Mutational analysis indicated that substitution of Ser226 with Pro and Arg228 with Ser yielded the highest activity and thermostability. The Ca(2+) ion enhanced the enzyme activity and thermostability of the wild-type and mutant Cut190. Circular dichroism suggested that the Ca(2+) changes the tertiary structure of the Cut190 (S226P/R228S), which has optimal activity at 65-75 °C and pH 6.5-8.0 in the presence of 20 % glycerol. The enzyme was stable over a pH range of 5-9 and at temperatures up to 65 °C for 24 h with 40 % activity remaining after incubation for 1 h at 70 °C. The Cut190 (S226P/R228S) efficiently hydrolyzed various aliphatic and aliphatic-co-aromatic polyester films. Furthermore, the enzyme degraded the PET film above 60 °C. Therefore, Cut190 is the novel-reported PET-degrading enzyme with the potential for industrial applications in polyester degradation, monomer recycling, and PET surface modification. Thus, the Cut190 will be a useful tool to elucidate the molecular mechanisms of the PET degradation, Ca(2+) activation, and stabilization.
The nuclear receptor, peroxisome proliferator-activated receptor c (PPARc), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fattyacid metabolites reportedly activate PPARc through conformational changes of the X loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARc to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARc antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARc-target gene. Collectively, these results suggest a novel agonism, in which PPARc functions as a multiple sensor in response to distinct metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.