The effects of initial monomer concentration, [M]o, and percent conversion on the extent of chain transfer to polymer in the free-radical solution polymerization of 2-ethylhexyl acrylate (EHA) have been studied. The polymerizations of EHA were carried out in cyclohexane at 70°C using 2,2′-azobis(2-cyanopropane) at 0.1 wt % relative to monomer as the initiator. 13 C NMR spectra of PEHA show that branching resulted from hydrogen abstraction at backbone C-H bonds, with no evidence for chain transfer in the side group. The branching levels were determined from unique resonances of branch-point carbons and ranged from 3 to 8 mol %, increasing as the conversion increased and as [M]o decreased. The trends for variation of branching level with [M]o and conversion are comparable to those for solution and bulk homopolymerizations of other acrylate monomers and vinyl acetate, although the branching levels for PEHA are much higher than those for poly(n-butyl acrylate) prepared under the same conditions.
Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability.In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk -trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk -trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics.
We investigated the dynamics of quadrupedal locomotion by constructing a simple quadruped model that consists of a body mechanical model and an oscillator network model. The quadruped model has front and rear bodies connected by a waist joint with a torsional spring and damper system and four limbs controlled by command signals from the oscillator network model. The simulation results reveal that the quadruped model produces various gait patterns through dynamic interactions among the body mechanical system, the oscillator network system, and the environment. They also show that it undergoes a gait transition induced by changes in the waist joint stiffness and the walking speed. In addition, the gait pattern transition exhibits a hysteresis similar to that observed in human and animal locomotion. We examined the hysteresis mechanism from a dynamic viewpoint.
Although physiological studies have shown evidence of phase resetting during fictive locomotion, the functional roles of phase resetting in actual locomotion remain largely unclear. In this paper, we constructed a control system for a biped robot based on physiological findings and investigated the functional roles of phase resetting in the gait transition from quadrupedal to bipedal locomotion by numerical simulations and experiments. So far, although many studies have investigated methods to achieve stable locomotor behaviors for various gait patterns of legged robots, their transitions have not been thoroughly examined. Especially, the gait transition from quadrupedal to bipedal requires drastic changes in the robot posture and the reduction of the number of supporting limbs, and so the stability greatly changes during the transition. Thus, this transition poses a challenging task. We constructed a locomotion control system using an oscillator network model based on a two-layer hierarchical network model of a central pattern generator while incorporating the phase resetting mechanism, and created robot motions for the gait transition based on the physiological concept of synergies. Our results, which demonstrate that phase resetting increases the robustness in gait transition, will contribute to the understanding of the phase resetting mechanism in biological systems and lead to a guiding principle for designing control systems for legged robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.